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52Cr Spinor Condensate: A Biaxial or Uniaxial Spin Nematic
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We show that the newly discovered 52Cr Bose condensate in zero magnetic field can be a spin nematic
of the following kind: a ‘‘maximum’’ polar state, a ‘‘colinear’’ polar state, or a biaxial nematic
ferromagnetic state. We also present the phase diagram with a magnetic field in the interaction subspace
containing the chromium condensate. It contains many uniaxial and biaxial spin nematic phases, which
often but not always break time reversal symmetry, and can exist with or without spontaneous
magnetization.
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Recently, Tilman Pfau’s group at Stuttgart has suc-
ceeded in condensing a Bose gas of 52Cr atoms [1].
These are spin-3 bosons with electronic spin J � 3 and
nuclear spin I � 0. In contrast, alkali-metal bosons such as
87Rb and 23Na are spin-1 or -2 bosons with J � 1=2 and
I � 3=2. Since 52Cr atoms have a value of J which is
6 times larger than that of the alkali metals, their dipolar
interaction constant is 36 times larger. Indeed, dipolar
effects have been observed in the expansion of polarized
Cr condensates [2], although they have not yet been ob-
served in the alkali metals. For this reason, Cr is sometimes
referred to as a ‘‘dipolar condensate,’’ although this char-
acterization is not quite appropriate since the dipolar en-
ergy is no more than a few percent of the total energy. As
we shall see, if the spin degree of freedom of Cr is released,
it will show many remarkable spin nematic structures
stabilized by energies much larger than the dipolar energy.
The Cr condensate, in short, is a quantum spin nematic.

At present, experiments on 52Cr are performed in mag-
netic traps which freeze the atomic spins. The spin degrees
of freedom, however, can be released in optical traps. In the
case of optically trapped 87Rb and 23Na, ground states of
different magnetic structures have been discovered. Since
Cr atoms have a higher spin, the number of possible phases
will increase. Cr condensate also differs from the alkali
metals in that its scattering lengths in different angular
momentum channels are very different, whereas they are
very similar in the alkali metals [3–5]. According to
Ref. [4], the closer these scattering lengths, the weaker
the spin-dependent interactions. Thus the ratio between
spin-dependent and density-density interactions in the al-
kali metals is about 1% while it is of order 1 in 52Cr. In
other words, once the spins of Cr are unfrozen, the spin-
dependent interactions overwhelm the dipolar energy. Any
novel properties of Cr spinor Bose-Einstein condensates
(BECs) will be consequences of the spin interaction with
dipolar effects as a perturbation.

For spin-3 bosons, the interactions are specified by the
scattering lengths aS for collisions with a total angular
momentum S � 0; 2; 4; 6. All aS except the one for S �
0 have been determined experimentally [2]. The physical
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system therefore lies on a line in the interaction parameter
space, which we refer to as the ‘‘Cr’’ line. While we shall
focus on this line, we also present the phase diagram as a
function of the interaction constants faSg and magnetic
field, for it will be useful for other spin-3 Bose systems.
As we shall see, the phase diagram is full of spin nematic
phases which are either unaxial or biaxial. These phases
typically but not always break time reversal symmetry,
which can come about with and without a spontaneous
magnetization [6,7]. The discovery of some of these ne-
matic phases will be exciting indeed.

The spin-dependent energy functional.—Let �m ����
n
p
�m, m � �3 to 3, be the condensate wave function of

a spin-3 Bose gas, where n is the density, and �y� � 1. As
shown in Ref. [4], the ground state of a homogenous or
single mode spinor condensate in zero magnetic field is
determined by the energy E=Eo �

P
S�0;2;4;6 ~aSP S, ~aS �

aS=aB, where Eo �
R
d3r�2�@2aB=M�n

2, aB is the
Bohr radius, P S �

PS
M��S jBS;Mj

2, and BS;M �P
m;m0�m�m0 hS;Mj3; m; 3; m0i is the amplitude of forming

a boson pair in state jS;Mi. In the case of spin-1 alkali-
metal gases (where S � 0; 2 in the energy E), the aS’s
differ from each other only by about a few percent, so E
is almost an identity. In contrast, 52Cr has a2 � �7aB,
a4 � 58aB, a6 � 112aB, while a0 is undermined [2].
Using the method in Ref. [4], E can be written as [8]

E � Eo

�
�j�j2 � �

X2

M��2

jBMj2 � �hSi � hSi � C
�
; (1)

where hSi � ��mSmm0�m0 , BM �
���
7
p
B2;M, � �

���
7
p
B0;0, so

that P 2 � 7
P
MjBMj

2. The coefficients are defined as � �
1

7aB
��a0 � a6� �

21
11 �a6 � a4�	, � � 1

7aB
��a2 � a6� �

18
11 


�a6 � a4�	, � �
1

11aB
�a6 � a4�, and C � 1

7aB
�a6 �

9
11 �a6 �

a4�	. We then have � � �4:38, � � 4:91, C � 9:69, and
� undetermined. Using the relation between S1 � S2, �S1 �
S2�

2 and the projection operators Pi [9], we can further
express Eq. (1) in terms of the nematic tensor N ij �

h�SiSj � SjSi�i=2 as

E=Eo � ��j�j2 � ��TrN 2 � ��hSi � hSi � �C; (2)
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FIG. 1. Phase diagram in zero magnetic field for � > 0. The
dashed line (referred to as the Cr line) is where the physical
system lies. The solid lines are first order boundaries. The nature
of the phases displayed is discussed in Fig. 3.
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where �� � �� 5
3�, �� � �=18, �� � �� 5

12�, �C � C�
�. For Cr, we have �� � �0:243, �� � 6:74, �C � 14:1, and
�� is unknown .

Dipolar energy.—To get an idea of the general structure
of ED, we use the single mode approximation so that all
components of �� have the same spatial dependence

���r� �
���������
n�r�

p
��, and �� is fixed. For harmonic traps

VT �
M
2

P3
i�1 !

2
i �r � âi�2, where �â1; â2; â3� is an orthonor-

mal triad, the dipole energy is [see footnote [10]]

ED=Eo �
X3

i�1

�i�hSi � âi	2; (3)

where �i �
1

2Eo
�g�B�

2
R
dr1dr2n�r1�n�r2��1� 3�âi �

r̂�2	=r3, r � r1 � r2. In particular, we denote the direction
with smallest � as â3. Combining the � term in Eq. (1) with
Eq. (3), all hSi-dependent terms in the energy can be
written as in Eq. (3) with �i ! �i � �. The effect of the
dipole energy is to align hSi along the direction â3. The
phase diagram in zero magnetic field including dipole
energy can therefore be obtained by first minimizing
Eq. (1) (without dipole energy), then replacing � by ��
�3, and aligning the spontaneous magnetization of those
phases that acquire it along â3.

To estimate the magnitude of �i, it is straightforward
to show that �i �

��g�B�
2

4�@2aB=M
4�Ii

3 � �1:7Ii where Ii �R
q jn�q�j

2�1� 3�âi � q̂�2	=
R

q jn�q�j
2. Approximating

n�r� as a Gaussian so that n�q� � Ce�
P

3
i�1

q2
i R

2
i , where Ri

is the radius of the atom cloud along âi and assuming a
cylindrical trap (Rx � Ry � R? � Rz), Iz varies from 0 to
1 as Rz=R? varies from 1 to 10. Thus, �i is at most about
25% of �. As we shall see, all the phases along the Cr line
either have zero magnetization, or a weak spontaneous
magnetization such that the � term in Eq. (1) contributes
very little to the total energy. Since ED is dominated by the
� term, it can be ignored as a first approximation.

Relation between singlet amplitude �, magnetization
hSi, and the nematic tensor N .—The quantities �, hSi,
and N provide a characterization of the phases. They are,
however, not independent quantities. Let us first consider
�, which is � � 2�3��3 � 2�2��2 � 2�1��1 � �2

0 �

A�o�mm0�m�m0 , where A�o�mm0 � ��1�m�1�m�m0;0 is the matrix
for spin change under time reversal. It is also easy to show
that the maximum value of j�j2 is 1, and the condition for
this is that � is invariant (up to a phase 	) under time
reversal, i.e., �A�o����m � ei	�m. This also implies hSi � 0
[5]. Thus any state with j�j< 1 breaks time reversal
symmetry.

In the presence of a magnetic field B � Bẑ, the rota-
tional invariance of Eq. (1) implies that

E=Eo � �j�j2 � �
X2

M��2

jBMj
2 � �hSi2 � phSzi � C;

(4)
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where p � g�BB=Eo. Next, we note that the tensor N
is Hermitian. It then has the diagonal form N ij �


1ê1iê1j � 
2ê2iê2j � 
3ê3iê3j, where fêag are the princi-
pal axes, (a � 1; 2; 3), êa � êb � �ab, and the 
a � h�êa �
S�2i> 0 are the eigenvalues, satisfying


1 � 
2 � 
3 � S�S� 1� � 12; S � 3: (5)

We shall order the 
’s so that 
1 � 
2 � 
3. The axes
(ê1; ê2; ê3) will be referred to as minor, middle, and major
axis, respectively. Without loss of generality, we can al-
ways arrange (ê1; ê2; ê3) in a right-handed triad. Using the
terminology of liquid crystals, the system is referred as a
(spin) nematic if N is not isotropic, i.e., not proportional
to the identity matrix. Systems with two identical eigen-
values and three unequal eigenvalues will be referred to as
uniaxial and biaxial nematics, respectively.

The different phases arise from the competition of �,
hSi, and N , which are not independent quantities.
Such competition can be illustrated by considering
��< 0, in which case TrN 2 in Eq. (2) favors 
3 � 9,

1 � 
2 � 3=2, which can be achieved by either the polar
state �1; 0; 0; 0; 0; 0; 1�=

���
2
p

, or the ferromagnetic state
�1; 0; 0; 0; 0; 0; 0�. However, neither of these states are fa-
vored simultaneously by the � term when ��> 0, and the
hSi2 term, since �� > 0 for Cr. One of the key features we
find below is that magnetization (be it spontaneous or
induced) is generally accompanied with biaxial nematicity.
Even though the energy functional is rotationally symmet-
ric about the external field ẑ, this symmetry is broken
spontaneously in the biaxial nematic state.

IV. Phase diagram in zero magnetic field, p � 0.—We
have minimized Eq. (1) by a combination of analytic and
numerical methods [11]. The phase diagrams are shown in
Figs. 1 and 2. Since � is unknown for 52Cr, the physical
system lies on the dotted straight line (or Cr line for short)
in Fig. 1, �=� � �0:892. It passes through the phases A,
B, and C, which we name ‘‘maximum polar’’ state (A),
5-2
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FIG. 2. Phase diagram in zero magnetic field for � < 0. The
solid and gray lines are first and second order boundaries,
respectively. The nature of the phases is discussed in Fig. 3.
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colinear polar state (B), and biaxial nematic ferromagnetic
state (C), respectively. All order parameters � displayed
below are unique up to a phase factor and an arbitrary spin
rotation.

Symbols and notations.—We characterize each phase by
its condensate wave function � , singlet amplitude �, mag-
netization hSi, and nematic tensor N . An isotropic N
(
1 � 
2 � 
3) will be denoted by a sphere. Uniaxial
nematics with (
1 � 
2 < 
3) and (
1 < 
2 � 
3) are
represented by a long and flat cylinder, with major and
minor axis being the symmetry axis of the cylinder, re-
spectively. Biaxial nematics with (
1 < 
2 < 
3) are rep-
resented as a ‘‘brick’’ with edge lengths given by 
a. The
principal axis êa is parallel to the edge with length 
a.
Figure 3 shows the structure of the phases. In particu-
lar, (A) Maximum polar state: this state has time re-
versal symmetry, since � � 1. It is a uniaxial nematic
with 
3 � 9, 
1;2 � 3=2. (B) Colinear polar state: it is a
superposition of two polar states �1; 0; 0; 0; 0; 0; 1� and
�0; 0; 1; 0; 1; 0; 0� with unequal weight and a relative phase.
FIG. 3. Phases present at p � 0. a; b; c; d, and � are real
numbers.
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This system is nonmagnetic hSi � 0 and yet has broken
time reversal symmetry, 0< j�j< 1. The latter is
achieved by the phase angle �, which varies from 1.3 to
1.4 along the Cr line from bottom to top. The system is
uniaxial nematic with 
1 < 
2 � 
3. (C) Biaxial nematic
ferromagnet: the system has a weak spontaneous magne-
tization hSi � Mẑ, M � 0:07 to 0.08, and is a biaxial
nematic with either ê2 or ê3 along hSi. Since M is small,
the contribution of the � term in Eq. (1) (and hence dipolar
energy) is a very small contribution to the total energy. This
structure is driven largely by the competition between the
nematic and the singlet contributions. The boundary sepa-
rating B and C is ~� � 3j ~�j=�3j ~�j � 2�, ~� � �=�, ~� �
�=�. The behavior of 
a and jhSij is shown in Fig. 4. The
properties of these phases are tabulated in Fig. 4. The
boundary between G and H is ~� � �24 ~�� 5 ~�2�=�36�
24 ~�� 5 ~�2� [12].

Phase diagram in nonzero magnetic field.—Figure 5
shows the phase diagram along the Cr line in Fig. 1 for p �

0 obtained by minimizing Eq. (4). It has an intricate
structure near � � 0. All states have nonzero magnetiza-
tion hSi along the direction of the magnetic field ẑ, repre-
sented as an arrow. The main features of our results are:

(i) The transition A1 ! Z1 ! G1 is a rotation of the
uniaxial nematic tensor in the A1 phase (represented as
a long cylinder) along its middle principal axis ê2

as one crosses the phase Z1, with the rotation angle fi-
nally reaching 90
 at the G1 phase. However, in the Z1

phase, N acquires biaxial nematicity, which continues
into the G1 phase. (ii) As p! 0, for �=� <�0:372
and �=� >�0:372, the states �TA1

and �TG1
reduce to

�1; 0; 0; 0; 0; 0; 1�=
���
2
p

and �0;
���
3
p
; 0;

������
10
p

; 0;
���
3
p
; 0�=4, re-

spectively, which are related to each other by a 90
 rotation
about ŷ. (iii) The transition A1 ! Z1 ! H1 is a similar
rotation process as in (i) except that the rotational angle is
zero when one reaches the H1 phase. The nematic tensor
N of H1 is again uniaxial, except that H1 has zero singlet
amplitude, unlike A1. (iv) G1 and G2 have similar tensor
N . There is, however, a jump in � across their boundary.
(v) As the B phase in Fig. 1 extends into the B1 phase in
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FIG. 5. Left panel: phase diagram for nonzero magnetic field along the Cr line in Fig. 1. The solid and gray lines are first and second
order boundaries, respectively. Right panel: explanation of the phases in the diagram. The numbers a; b; c; d are real. All entries of the
wave functions for the Zj phases are generally nonzero. It is not clear they can be represented in a simple form as the other phases.
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finite field p, its nematic tensor N changes from uniaxial
to biaxial, merging into the C1 phase, the finite field
extension of C. (vi) Among all phases in finite field,
Z1; Z2, and Z3 are the ones where none of their principal
axes are aligned with ẑ. The Z1 has it middle axis ê2 ? ẑ.
In both Z2 and Z3, none of the direction cosines êa � ẑ
vanish. Among these three phases, Z3 is the only phase that
has vanishing singlet amplitude. The phase boundary be-
tween C1 � Z3 and Z3 �H1 are straight lines at p=� �
0:667 and 1, respectively. (vii) The system becomes a
full ferromagnet (FF) when p=� > 7:5. To observe the
spinor feature, we then need B< Bc, where Bc �
�7:5���2�@2aBn=M�=�g�B�. Using g � 2, � � 4:91, we
have Bc � �8:34
 10�19n	 Gauss, where n is in units of
cm�3. Thus, with n � 5
 1012 to 1014 cm�3, Bc � 4:2

10�6 to 10�4 Gauss.

Detection.—Although the ground states of Eq. (1) are
determined up to an arbitrary rotation about ẑ, this degen-
eracy can be lifted by the anisotropy of a trap through
dipole interaction Eq. (3). With the principal axes (i.e.,
fêag) fixed by the magnetic field and the trap, the eigen-
values 
a can be determined by performing Stern-Gerlach
experiments along the axes êa.

Final remarks.—The realization of quantum spin nem-
atics, especially the biaxial ones, will be an exciting devel-
opment in both cold atom and condensed matter physics.
These novel states are yet to be realized in solid state
systems, and biaxial nematics are known to have non-
Abelian defects. Although reducing the magnetic field to
the spinor regime for Cr is a challenging task, screening a
field to 10�4 Gauss is not outside the reach of current
technology. From the present work, we expect spin nem-
atics will also be found in other higher spin Bose gases.
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