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The derivation and solution of integrable nonlinear evolution partial differential equations in three
spatial dimensions has been the holy grail in the field of integrability since the late 1970s. The celebrated
Korteweg–de Vries and nonlinear Schrödinger equations, as well as the Kadomtsev-Petviashvili (KP) and
Davey-Stewartson (DS) equations, are prototypical examples of integrable evolution equations in one and
two spatial dimensions, respectively. Do there exist integrable analogs of these equations in three spatial
dimensions? In what follows, I present a positive answer to this question. In particular, I first present
integrable generalizations of the KP and DS equations, which are formulated in four spatial dimensions
and which have the novelty that they involve complex time. I then impose the requirement of real time,
which implies a reduction to three spatial dimensions. I also present a method of solution.
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Integrable systems have had a significant impact on both
theory and phenomenology. Important physical applica-
tions range from fluid mechanics and nonlinear optics to
quantum gravity and field theories. The modern history of
integrable systems begins with the solution of the initial-
value problem of the Korteweg–de Vries (KdV) equation
using the inverse scattering method [1] and with the for-
mulation of integrable equations as the compatibility con-
dition of two linear eigenvalue equations called a Lax pair
[2]. Milestones in the history of integrable evolution partial
differential equations (PDEs) were the solution of the non-
linear Schrödinger (NLS) equation using the Riemann-
Hilbert formalism [3] and the extension of the inverse
scattering from one to two spatial dimensions using the
nonlocal Riemann-Hilbert [4] and the d-bar formalisms
[5–7]. Integrable nonlinear evolution PDEs possess par-
ticular localized solutions which dominate the behavior of
generic solutions after a long time [8]. Important examples
of such solutions are solitons for equations in one spatial
dimensions, as well as lumps [4] and dromions [9] for
equations in two spatial dimensions.

Gel’fand and the author [10] have emphasized that the
inverse scattering method, as well as its extension to two
spatial dimensions, can be thought of as nonlinear Fourier
transform methods, where the relevant transform pairs are
constructed by analyzing the t-independent part of the Lax
pair. In what follows, I first present a general approach for
constructing nonlinear Fourier transform pairs in four di-
mensions. An example of such a pair can be constructed by
analyzing the following eigenvalue equation:

� �x � �3� �y � k��3; �� �Q� � 0;

x �
��� ��

2
; y �

��� ��
2

; (1)

where the complex variables k; �; � are given by

k � kR � ikI; � � �1 � i�2; � � �1 � i�2;

with kR; kI; �1; �2; �1; �2 real variables; the 2� 2 matrices
06=96(19)=190201(4) 19020
�3, Q are defined by

�3 �
1 0

0 �1

 !
;

Q �
0 q1��1; �2; �1; �2�

q2��1; �2; �1; �2� 0

 !
;

the bar denotes complex conjugation, �; � denotes the usual
matrix commutator, and � is a 2� 2 matrix-valued
function which depends on the six real variables
f�1; �2; �1; �2; kR; kIg.

Indeed, let fq1; q2g be complex-valued functions with
sufficient smoothness which decay for large values of the
spatial variables. A nonlinear Fourier transform of fq1; q2g
denoted by ff1; f2g, which depends on the four real varia-
bles fkR; kI; �R; �Ig, is defined by

f1 �

�
2

�

�
3 Z

R4
E1q1�22dV;

f2 �

�
2

�

�
3 Z

R4
E2q2�11dV;

dV � d�1d�2d�1d�2;

E1 � exp��4i�kI�1 � kR�2 � �I�1 � �R�2��;

E2 � exp��4i���I�1 � �R�2 � kI�1 � kR�2��;

(2)

�ij denote the components of the matrix �, and � is
defined in terms of fq1; q2g through the solution of
Eq. (1) supplemented with the boundary condition that �
tends to the identity matrix for large values of the spatial
variables. The inverse nonlinear Fourier transform associ-
ated with Eqs. (2), i.e., the solution of Eqs. (2) for fq1; q2g
in terms of ff1; f2g, is given by

q1 �
Z
R4
E�1

1 f1�11dv; q2 � �
Z
R4
E�1

2 f2�22dv;

(3)

where dv � dkRdkId�Rd�I and � is defined through
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ff1; f2g via the following nonlocal d-bar problem:

@��kR; kI�

@ �k
�
Z
R2
���R; �I�F��R; �I; kR; kI�d�Rd�I;

� � diag�1; 1� �O
�
1

k

�
; k! 1;

where F is an off diagonal 2� 2 matrix with ‘‘12’’ and
‘‘21’’ entries equal to f1E1 and f2E2, and for convenience
of notation we have suppressed the dependence of� and F
on the space variables �1; �2; �1; �2.

If fq1; q2g are sufficiently small, then �11 and �22 are
approximated by 1, and hence ff1; f2g reduce to the usual
Fourier transforms of fq1; q2g in the four independent
variables f�1; �2; �1; �2g with associated Fourier expo-
nents fkI;�kR; �I;��Rg and f��I; �R;�kI; kRg, respec-
tively. Similarly, Eqs. (3) reduce to the usual inverse
Fourier transform in four dimensions.
19020
The derivations of the nonlinear Fourier transform pair
(2) and (3) involves the spectral analysis of Eq. (1).
Namely, we first construct an appropriate solution � of
(1) in terms of fq1; q2g. Using the fact that this � is
bounded for all complex values of k, we then derive an
alternative representation for � by computing @�=@ �k and
employing Pompieu’s formula [11]. This alternative rep-
resentation is expressed in terms of the functions ff1; f2g
defined by Eqs. (2), and, hence, equating these two repre-
sentations of �, we find the inverse formulas (3).

It turns out that nonlinear Fourier transform pairs in four
dimensions, such as the pair (2) and (3), can be used for the
solution of the initial-value problem of integrable non-
linear evolution PDEs in four spatial dimensions, provided
that we allow time to be complex. For example, using (2)
and (3) we can solve the following system of integrable
nonlinear evolution PDEs for the two independent vari-
ables fq1; q2g, in four real spatial variables f�1; �2; �1; �2g,
and in two real time variables ft1; t2g,
��1�j@�tqj �
1
4�@

2
��
� @2

���qj � qj@
�1
��
�q1q2� �� � 0; @�1

��
f � �

1

�

Z
R2

f��01; �
0
2�

�� �0
d�1d�2; (4)
where, in the first of Eqs. (4), j is 1 or 2 and t � t1 � it2.
Indeed, let fq�0�1 ; q

�0�
2 g denote the initial conditions fq�0�j g

2
1 �

fqj��1; �2; �1; �2; 0; 0�g21. Let ff�0�1 ; f�0�2 g be the functions
defined by Eq. (2) with fq1; q2g replaced by fq�0�1 ; q

�0�
2 g.

Let fqj��1; �2; �1; �2; t1; t2�g21 be defined by Eqs. (3),
with f1 and f2 replaced by f�0�1 E and f�0�2 E�1, where

E � exp�4i��R�I � kRkI�t1 � 2i��2
R � �

2
I � k

2
R � k

2
I �t2�:

Then fq1; q2g solve Eqs. (4) with the initial conditions
fq�0�1 ; q

�0�
2 g.

If fq�0�1 ; q
�0�
2 g are sufficiently small, then �11 and �22 can

be approximated by 1 andfq1; q2g solve Eqs. (4) without
the nonlinear term.

After understanding the crucial importance of the com-
plexification of time, it is possible to employ the so-called
dressing method introduced by Zakharov and his co-
workers (see, for example, [12]), which is technically
much easier than the nonlinear Fourier transform method.
This method has the disadvantage that it cannot be used for
the solution of the initial-value problem, but it has the
advantage that it constructs integrable nonlinear PDEs, as
well as large classes of their solutions, in a straightforward,
essentially algebraic manner. For example, using the dress-
ing method, we can derive the following result. Let
��kR; kI� be the solution of the nonlocal d-bar problem

@��kR; kI�

@ �k
�
Z
R2
���R; �I�F�kR; kI; �R; �I�d�Rd�I;

��kR; kI� � 1�
�
k
�O

�
1

k2

�
; k! 1; (5)

where
F � f�kR; kI; �R; �I� expf4i���I � kI�x1 � �kR � �R�x2

� 2��R�I � kRkI�y1 � ��2
I � �

2
R � k

2
R � k

2
I �y2

� �k3
I � �

3
I � 3�I�2

R � 3k2
RkI�t1 � �k

3
R � �

3
R

� 3�R�2
I � 3kRk2

I �t2�g; (6)

and for convenience of notation we have suppressed in
Eqs. (5) the dependence of �, F, and � on the six real
variables fx1; x2; y1; y2; t1; t2g. Assume that the above � is
unique and that q is defined in terms of � by q � 2� �x.
Then q solves the generalized Kadomtsev-Petviashvili
(KP) equation

q�t �
1
4q �x �x �x �

3
2qq �x �

3
4@
�1
�x q �y �y; (7)

where x � x1 � ix2, y � y1 � iy2, t � t1 � it2.
Furthermore, this equation possesses the Lax pair

�Dy �D
2
x � q�� � 0;

�Dt �D
3
x �

3
2qDx �

3
4�q �x � @

�1
�x q �y��� � 0;

(8)

where Dx;Dy;Dt are defined by

Dx � @ �x � k; Dy � @ �y � k2; Dt � @�t � k3:

Indeed, if D denotes any of these operators, then D�
satisfies the first of Eqs. (5) provided that F satisfies

F �x � ��� k�F; F �y � ��2 � k2�F;

F�t � ��
3 � k3�F:

The solution of these equations and the requirement of
boundness yield the expression for F defined by (6). Let
L� denote the left-hand side of the first of Eqs. (8). Then
L� satisfies the first of Eqs. (5), and, furthermore, because
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of the definition of q, it satisfies L� � O�1=k� as k! 1;
thus, L� � 0. Similarly, ifM� denote the left-hand side of
the second of Eqs. (8), then M� � 0. The compatibility
condition of Eqs. (8) yields Eq. (7).

The dressing method provides a straightforward tool for
constructing large classes of explicit solutions. For ex-
ample, the particular choice f �

Pn
1 cj��k� kj�����

�j�, where � denotes the complex Dirac function, yields
an explicit soliton-type solution of Eq. (7). In a similar
manner, the following explicit solution of Eqs. (4) can be
constructed:

q1 �
�2�k� ��c1E1E

1� c1c2E1E2
; q2 �

2�k� ��c2E2E�1

1� c1c2E1E2
;

(9)

where E1; E2; E have been defined earlier and c1; c2 are
arbitrary complex constants. For appropriate values of
these constants, these solutions are bounded and they
represent soliton-type solutions of the system of nonlinear
PDEs defined by Eqs. (4).

One of the most important features of integrable equa-
tions is that they possess the so-called Painlevé property
[13]. The investigation of this property for integrable evo-
lution PDEs involves an expansion in the complex-t plane,
which is usually carried out formally by simply treating t
as a complex variable. However, the results presented here
suggest a systematic procedure for constructing the proper
complexification of integrable PDEs. For example, such
complexifications for the KdVand KP equations are Eq. (7)
with x � y and Eq. (7), respectively. Similarly, proper
complexifications of the NLS and Davey-Stewartson
(DS) equations are Eqs. (4) with � � � and Eqs. (4),
respectively.

Equation (7) reduces to the KP equation provided that q
is independent of t2, x2, and y2. The exponential appearing
in (6) implies that this is the case provided that �R � kR
and �I � �kI, in which case the nonlocal d-bar problem
(5) becomes the local d-bar problem @�=@ �k �
��kR;�kI� ~F�kR; kI�. Similarly, it is straightforward to re-
duce Eqs. (4) to the DS equation.

After the pioneering work of Ref. [12], nonlocal d-bar
problems have been considered by several authors.
However, until now they have been used for the solution
of evolution PDEs in two spatial variables; thus, they were
effectively reduced to local d-bar problems.

We next discuss the reduction to 3� 1. For the gener-
alized KP equation, this reduction is explicit, yielding a
single evolution PDE in three spatial dimensions, whereas
for the generalized DS it is implicit, yielding an evolution
PDE in four spatial dimensions constrained by an addi-
tional equation.

The solution of the generalized KP equation is indepen-
dent of t2 provided that the coefficient of t2 in the expo-
nential (6) vanishes. This implies a constraint between the
four spectral variables fkR; kI; �R; �Ig, which in turn im-
19020
plies a constraint between the four spatial variables. Hence,
by eliminating the t2 dependence, Eq. (7) becomes an
evolution equation in only three independent spatial
variables.

Assuming q is real, suppressing the t2 dependence, and
renaming t1 as t, Eq. (7) yields

qt �
1
16�@

3
x1
� 3@x1

@2
x2
�q� 3

2qqx1
� 3

8�@
2
y1
� @2

y2
�Ref@�1

�x qg

� 3
4@y1

@y2
Imf@�1

�x qg;

0 � 1
16��@

3
x2
� 3@x2

@2
x1
�q� 3

2qqx2

� 3
8�@

2
y1
� @2

y2
� Imf@�1

�x qg � 3
4@y1

@y2
Ref@�1

�x qg: (10)

Letting @�1
�x q � R� iI, where R and I are real, and apply-

ing the Laplacian operator � � @x@ �x=4 to this equation,
we find �R � 2qx1

and �I � �2qx2
. Replacing in

Eq. (10) R and I by 2��1qx1
and �2��1qx2

, respectively,
differentiating the first of Eqs. (10) by @x2

, the second by
@x1

, and adding the resulting equations, we find the first of
Eqs. (11) below; similarly, differentiating the first of
Eqs. (10) by @x1

, the second of Eqs. (10) by @x2
, and

subtracting the resulting equations, we find the second of
Eqs. (11) below:

@2q
@t@x1

�
1

4
�@3
x1
@x2
� @3

x2
@x1
�q�

3

2
@x1
@x2
�q2� �

3

2
@y1
@y2
q;

@2q
@t@x2

�
1

16
�@4
x1
� @4

x2
� 6@2

x1
@3
x2
�q�

3

4
�@2
x2
� @2

x1
��q2�

�
3

2
�@2
y1
� @2

y2
�q: (11)

Integrating the first of Eqs. (11) with respect to y1, we
find an explicit expression for qy2

in terms of derivatives of
q with respect to t; x1; x2; y1, as well as integrals with
respect to y1. Using this expression to compute qy2y2

, and
then substituting the resulting formula in the second of
Eqs. (11), we find a single evolution equation for q involv-
ing only the variables t; x1; x2; y1.

Finally, we discuss the reduction of Eqs. (4). The solu-
tion of these equations is independent of t1 provided that
�I�R � kIkR � 0, which in turn implies a constraint be-
tween the four spatial variables. For sufficiently small
initial conditions, this constraint is @�1

@�2
� @�1

@�2
� 0,

but, in general, it takes a nonlinear form: Letting q2 � c �q1,
where c is a complex constant, suppressing the t1 depen-
dence, and renaming q1 and t2 as q and t, Eqs. (4) become

iqt �
1
2�@

2
�1
� @2

�2
� @2

�1
� @2

�2
�q� 2qRefc@�1

��
jqj2��g � 0;

�@�1
@�2
� @�1

@�2
�q� 2q Imfc@�1

��
jqj2��g � 0:

(12)

In contrast to the analogous case of Eqs. (10), we have
not been able to solve the second of Eqs. (12) explicitly.

It can be verified that Eqs. (12) possess the explicit
soliton-type localized solution given by the first of
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Eqs. (9), with the restrictions

�I�R � kIkR � 0 and jc1j
2c �

k� �
�k� ��

:

The so-called Lowner system [14] is the t-independent
part of the Lax pair of several integrable equations in 2�
1, and, therefore, its proper complexification should be
investigated. Similar considerations are valid for the
PDEs considered in Refs. [15–18].

The existence of integrable nonlinear equations in four
spatial dimensions involving complex time suggests that
perhaps the idea of complexifying time should be inves-
tigated in the context of modern field theories.
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