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Comment on ‘‘Gaussian Quantum Monte Carlo
Methods for Fermions and Bosons’’

In a recent Letter, Corney and Drummond propose a
Gaussian quantum Monte Carlo method (GQMC) based on
a Gaussian expansion of the density operator [1]. They
claim that their method is able to solve bosonic and fermi-
onic problems without encountering a ‘‘sign error.’’ They
present their method as a continuous diffusion process in
configuration space. However, any practical implementa-
tion will have to resort to discrete time steps, where care
has to be taken to include all relevant terms. When using
the correct discrete-time propagation, one finds that
GQMC is equivalent to the auxiliary-field quantum
Monte Carlo method (AFQMC) [2–5] and hence must
have the same sign problems [6,7]. To substantiate my
claim I will show how the expressions for the repulsive
fermionic Hubbard model given by Corney and
Drummond can be derived in the framework of the
AFQMC [8]. The discussion can easily be generalized to
continuous-time [3], fermionic pair [4], and bosonic [5]
versions of AFQMC.

AFQMC is based on the decomposition of the many-
body density operator as a weighted average over an en-
semble of exponentials of one-body operators, e��Ĥ �R
P��X� exp���ĥ�X��dX. This permits to express grand-

canonical expectation values in terms of the single-particle
basis matrix representations h of the operators ĥ, e.g.,
the expectation value of the operator ayj ai is given by
nij��; X� � �e

��h�X�=�1� e��h�X���ij. To arrive at such a
decomposition, one splits the imaginary-time interval
�0; �� into a number of time slices and applies the
Hubbard-Stratonovich transformation [9], e��Ĥ /
R
e��=2�2

e��̂���d��O��2�, with the one-body operator
�̂��� � �Ĥ0 �

Pm
j�1 �jÂj, and Ĥ � Ĥ0 �

1
2

Pm
j�1 Â

2
j .

This leaves considerable freedom in the choice of operators
Âj and auxiliary fields �. A way to optimize this stochastic
gauge is given by the shifted-contour AFQMC [10], which
consists in redefining the auxiliary field �j � ��j � hÂji�;X.
The resulting operator �� ��� is the one given by the ex-
pression below Eq. (9) in Ref. [1], if one takes into account
that the imaginary-time correlation ���0 � �� for the aux-
iliary fields translates in a factor �2���1 when using dis-
crete time steps.

Consider an infinitesimal step in imaginary time, �0 �
�� 2�, by multiplying each of the elements of the en-
semble to the left and to the right with a propagator
exp���Ĥ�, decomposed using auxiliary fields ��l and ��r.
The one-body density matrix n��; X� will then evolve as
n��0; X0� � n� ���1� n��� ��l�n� n�� ��r��
�1� n�� �O��2�2�. If one draws the auxiliary fields ��l;r
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from a Gaussian distribution then one has to update only
the non-Gaussian part of the weight, ���0; X0� �
���; X��1� 2�hĤ0i�;X � �

P
jhAji

2
�;X� �O��2�2�. The

formal limit �! 0 would lead to the expressions in
Ref. [1]. However, because the auxiliary fields ��l;r are of
order ��1=2, the O��2�2� terms have to be included.
Otherwise the propagation will deviate from the exact
solution already at leading order in �, as is easily demon-
strated for a one-site model [8]. Furthermore, this is also
the place where the sign problem shows up: it is not
guaranteed that the weights remain positive, even for
very small values of � [7]. In conclusion, if GQMC is
implemented correctly then it is equivalent to AFQMC
and hence it should have the same sign properties.
Otherwise it provides only approximate results that might
be improved upon by symmetry projections [11].
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