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A classification in universality classes of broad categories of phenomenologies, belonging to physics
and other disciplines, may be very useful for a cross fertilization among them and for the purpose of
pattern recognition and interpretation of experimental data. We present here a simple scheme for the
classification of nonlinear growth problems. The success of the scheme in predicting and characterizing
the well known Gompertz, West, and logistic models, suggests to us the study of a hitherto unexplored
class of nonlinear growth problems.
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Present efforts towards the understanding of complex
systems in physics, biology, economics, and social science
require complementary microscopic and macroscopic de-
scriptions. Microscopic models depend on such a large
number of parameters that they often lose almost any
predictive power, even when the calculations do not be-
come forbiddingly difficult or time consuming. On the
other hand, macroscopic descriptions are often inadequate
and do not take advantage of the enormous progress that
has been achieved at the microscopic level in recent years.
An intermediate (mesoscopic) approach [1–3] may be very
fruitful, but a bridging among the various levels [4] is not
always easy to accomplish.

A different approach has consequently emerged for the
treatment of problems , which do not directly require a
detailed description of the system to be investigated. The
idea is to exploit the spectacular advancement of interdis-
ciplinary research, which has taken place in the last two
decades or so, involving, e.g., the relevance of scale laws,
complexity, and nonlinearity in virtually all disciplines.

In this context many patterns have been discovered,
which are remarkably similar, although they concern com-
pletely different phenomenologies. This is hardly surpris-
ing, since often the ‘‘background’’ mathematics is the
same. We shall call them ‘‘phenomenological universal-
ities’’ [5], in the sense that they refer to a ‘‘transversal’’
generality (not to a uniformly general behavior within a
given class of phenomena).

As examples of universality we can quote the ‘‘life’s
universal scaling laws’’ [6], which will be discussed later,
and the ‘‘universality of nonclassical nonlinearity’’ [7].
The latter suggests that unexpected effects, such as those
recently discovered by P. Johnson and collaborators [8] and
called by them ‘‘fast dynamics,’’ may be found as well,
although possibly with quite different manifestations, in
other fields of research.
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A reliable macroscopic analysis of a complex system
requires two fundamental ingredients: nonlinearity and
stochasticity. Nonlinearity is more fundamental because
the stochastic behavior requires a nonlinear dynamics.
Therefore nonlinearity must be considered as the funda-
mental feature of these systems and in this Letter we
consider general growth problems based on this crucial
aspect. We shall show that different ‘‘degrees of nonline-
arity’’ (as specified below) correspond to various growth
patterns, which can be systematically classified.

For this purpose, let us consider the very broad class of
growth phenomena, which may be described by the simple
law

dY�t�
dt

� ��t�Y�t�; (1)

where ��t� represents the specific growth rate, which may
vary with time, of a given variable Y�t�. By introducing the
nondimensional variables � � ��0�t, y�t� � Y�t�=Y�0�,
and a��� � ��t�=��0�, Eq. (1) becomes:

dy���
d�

� a���y���; (2)

with y�0� � a�0� � 1. By defining the time variation of
a��� through a function ��a�

��a� � �
da���
d�

(3)

we obtain a system of two differential equations, which
may generate a variety of growth patterns, according to the
explicit form of ��a� (see also Ref. [9]), and is usually
analyzed by the standard fixed points and characteristic
curves methods [10,11].

In this contribution we are not directly interested in this
aspect, but we wish to show, instead, how the nonlinear
terms in ��a� affect the growth dynamics process.
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We assume that ja���j< 1, for � > 0, and consider a
polynomial expansion for ��a�

��a� � �1n�0bna
n (4)

in which we retain only a limited number of terms.
Borrowing from the language of phase transitions [12],
we define as belonging to the phenomenological universal-
ity class of order N (which we shall call UN, N �
1; 2; . . . ), the ensemble of all the phenomenology, which
may be suitably described by truncating the series at the
power n � N. In the following we shall analyze in detail
the classes U1, U2, and U3 and provide a description of
their nonlinear properties.

The ‘‘linear’’ behavior of the system corresponds to a
constant specific growth rate, i.e., ��a� � 0 (or bn � 0 for
any n). Then y��� follows a purely exponential law. Also
the case b0 � 0 with all bn � 0 for n � 1, can be easily
shown to lead to an exponential growth. Since we are
interested only in the nonlinear effects, we shall assume
b0 � 0. This does not cause any loss of generality, since
one can always expand � in the variable � � a� c, where
c is a solution of �1n�0bnc

n � 0. In the � expansion the
coefficient of �0 vanishes. Likewise, again without any
loss of generality, we can set b1 � 1, as one would have
from an expansion in the variable � � a=b1.

In order to study the various classes of universality and
obtain the corresponding differential equations and solu-
tions, we write from Eqs. (2) and (3)

���a�
dy
da
� ay; (5)

from which it follows

lny � �
Z ada

��a�
� const: (6)

By solving the previous equation with respect to the vari-
able a��� and then substituting into Eq. (2), one obtains the
differential equation characterizing the class. The integra-
tion constant can be easily obtained from the initial
conditions.

Let us then start by considering the class U1, i.e., with
N � 1. From Eq. (6) and ��a� � a, it immediately follows

dy
d�
� y� y lny; (7)

with the solution

y � exp�1� exp�����: (8)

Equation (7) represents the ‘‘canonical’’ form of U1 dif-
ferential equations and corresponds to the Gompertz law,
originally introduced [13] in actuarial mathematics to
evaluate the mortality tables and, nowadays, largely ap-
plied to describe economical and biological growth phe-
nomena. For example, the Gompertz law gives a very good
phenomenological description of tumor growth [14,15] and
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can be related to the energetic cellular balance [16]. It is re-
markable that it does not contain any free parameter (ex-
cept for the scale and linear parameters which have not
been included, as discussed before), i.e., all Gompertz
curves are (under the mentioned proviso) identical.

Let us now turn our attention to the class U2. From
Eqs. (6) and (3) and ��a� � a� ba2, where b � b2, it
follows

dy
d�
� �2y

p � �2y; (9)

where �2 � �1� b�=b, p � 1� b, and �2 � 1=b with
the solution

y � �1� b� b exp�����1=p: (10)

By identifying y with the mass of a biological system, y �
m (with m0 � y0 � 1), and defining the asymptotic mass

M � lim
�!1

m��� � �1� b�1=p (11)

it is easy to show that Eqs. (9) and (10) correspond to the
well-known allometric West equation for the case p � 3=4
[17]. In their ontogenetic growth model, m represents the
mass of any living organism, from protozoa to mamma-
lians (including plants as well). By redefining their mass
and time variables z � 1� �y=m�b and � � ��� lnb�
b lnM they obtain the very elegant parameterless universal
law

z � exp����; (12)

which fits well the data for a variety of different species,
ranging from shrimps to hens to cows. It is interesting to
note that, in a subsequent work [18], West and collabora-
tors give an interpretation of � as the ‘‘biological clock,’’
based on the organism’s internal temperature.

An extension of West’s law to neoplastic growths has
been recently suggested by Guiot, Delsanto, Deisboeck,
and collaborators [19,20]. Although an unambigous fitting
of experimental data is much harder for the tumors (except
for cultures of multicellular tumor spheroids), the exten-
sion seems to work well. Of course, other mechanisms
must be taken into account, such as the pressure from the
surrounding tissue [21]. Another important issue is the
actual value of the exponent p, which has been the object
of a strong debate [22]. Recently Guiot et al. [23] proposed
that p may vary dynamically with the fractal nature of the
input channels (e.g., at the onset of angiogenesis).

Although it is not obvious from a comparison between
Eqs. (7) and (9), U1 represents a special case (b � 0) of
U2, as it obviously follows from the power expansion of �
(which has b � 0 in U1). This can be verified directly by
carefully performing the limit for b! 0 in Eq. (10). In
fact, it is interesting to plot y vs � in a sort of phase diagram
(see Fig. 1) in which the Gompertz curve (solid line)
separates the two U2 regions, ‘‘West-like’’ and ‘‘logistic-
like’’ (b > 0 and b < 0, respectively).
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FIG. 1. Growth curves belonging to the class U2. From the top
to the bottom the values of the parameter b are
�0:25;�0:1; 0:1; 0:25; 0:5, respectively: The solid curve (b �
0, p � 1) corresponds to the Gompertzian (U1), while the
dashed one refers to the value proposed in [6] p � 3=4 (b �
1=4).
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This leads to a very suggestive interpretation of Eq. (9).
Having added a term to the ��a� expansion, we gain, in
U2, the possibility of adding a ‘‘new’’ ingredient, which
turns out to be a different dimensionality of the ‘‘energy
flux’’, i.e., input, output, and consumption (metabolism).
Thus the first term on the right-hand side of Eq. (9) may be
related [24] to the premise that the tendency of natural
selection to optimize energy transport has led to the evo-
lution of fractal-like distribution networks with an expo-
nent p for their terminal units vs an exponent 1 for flux
mechanisms related to the total number of cells. When b �
0, p � 1, we lose the new ingredient and fall back into U1.

This is confirmed also by considering the logistic equa-
tions, corresponding to Eq. (9) with negative b. The usual
logistic equation is obtained for p � 2. As well known in
population dynamics [25], here the new ingredient is the
competition for resources.

Finally, we consider the class U3. Writing

��a� � a�1� ba� ca2� (13)

from Eq. (6) it follows

Z da

1� ba� ca2 � K � lny: (14)

In this case there are three subclasses,U31, U32, and U33,
corresponding to � � 4c� b2 � <0. For brevity we limit
ourselves to report here the canonical equation for U31:

dy
d�
� �3y� �3y

p � �3
dyp

d�
; (15)

where d �
��������
��
p

, p � 1� d, K � �d� b� 2c�=�d�
b� 2c�, �3 � �d� c�=2c, �3 � K�d� c�=2c, and �3 �
�K=�1� d�. It is interesting to observe that, in the same
way that U2 adds (with respect to U1) a term with a
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different dimensionality to the energy flux contribution,
U3 adds such a term [the last one in Eq. (15)] to the growth
part.

To conclude, we have developed a simple scheme that
allows the classification in nonlinear phenomenological
universality classes of all the growth problems, which
can be described by Eqs. (2) and (3). We have found that
the first class U1 corresponds to the Gompertz curve,
which has no free parameters (apart from scale and linear
ones). The second class U2 includes all the West-like and
logistic curves and has a free parameter b: when b � 0 we
fall back into U1 (Gompertz).

The success of the scheme in obtaining the classes U1
and U2, when one or two terms are retained in the expan-
sion of ��a�, has suggested to us to investigate the class
U3, which is generated by simply adding one more term
[see Eq. (13)]. To our knowledge, this class has never been
investigated before. A remarkable result is that each new
class adds a new ‘‘ingredient’’ (or growth mechanism).
E.g., U2 allows for the possible presence of two dimen-
sionalities in the energy flux. U3 extends such a possibility
to the growth term (the time derivative).

In addition to its intrinsic elegance [26], the concept of
universality classes may be useful for several reasons of
applicative relevance. In fact it greatly facilitates the cross
fertilization among different fields of research. Also, if an
unexpected effect is found experimentally in a field, simi-
lar effects ‘‘mutatis mutandis’’ should also be sought in
similar, although unrelated, experiments in other fields.
Finally, if a detailed study is performed to recognize the
patterns that are characteristics of the most relevant classes
(and subclasses), this could greatly help in classifying and
fitting new sets of experimental data independently of the
field of application. The proposed formalism is presently
being applied to growth problems of current interest in
physics. Exploitations of the cross fertilization ‘‘strategy’’
are extremely important, in particular, for the export of
models and methods which have been developed in physics
to other disciplines (and vice versa).

We wish to thank Dr. M. Griffa and Dr. F. Bosia for their
help and useful discussions. This work has been partly
supported by CviT (Centre for the Development of a
Virtual Tumor).
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