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Decoupling Phenomena in Supercooled Liquids: Signatures in the Energy Landscape
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A significant deviation from the Debye model of rotational diffusion in the dynamics of orientational
degrees of freedom in an equimolar mixture of ellipsoids of revolution and spheres is found to begin at a
temperature at which the average inherent structure energy of the system starts falling with drop in
temperature. We argue that this onset temperature corresponds to the emergence of the � process as a
distinct mode of orientational relaxation. Further, we find that the coupling between rotational and
translational diffusion breaks down at a still lower temperature where a change occurs in the temperature
dependence of the average inherent structure energy.
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The relaxation phenomena in supercooled liquids con-
tinue to stimulate intense research interests despite persis-
tent research activity over decades [1,2]. A variety of ex-
perimental techniques, e.g., dielectric relaxation spectros-
copy, light scattering, time resolved optical spectroscopy,
NMR spectroscopy, and optical Kerr effect spectroscopy,
probe dynamics of orientational degrees of freedom
(ODOF) [3]. These experiments reveal an array of dynami-
cal features, which are yet far from being completely
understood. A decoupling between rotational and transla-
tional diffusion is observed in deeply supercooled molecu-
lar liquids in the sense that orientational correlation time
continues to track the viscosity as given by the Debye-
Stokes-Einstein (DSE) relationship while translational dif-
fusion coefficient does not, in contradiction to what is
predicted by the Stokes-Einstein (SE) relation [4–8]. The
�� � bifurcation [9–11], which commonly refers to the
bifurcation into two peaks in the dielectric relaxation
spectra [9], marks yet another decoupling, this time be-
tween two distinct mechanisms for orientational relaxation
in liquids composed of nonspherical molecules. The bifur-
cation temperature TB was believed to be close to the
mode-coupling theory (MCT) critical temperature Tc
[11], but it has been recently shown in broadband dielectric
relaxation measurements that � and � relaxations merge
together only well above Tc [12].

Here we address the decoupling phenomena from the
perspective of potential energy landscape by studying a
system with orientational degrees of freedom. The energy
landscape formalism is an approach that explores the fea-
tures of the underlying potential energy surface of a system
for understanding its complex dynamics [13–16]. The
onset of nonexponential relaxation in the supercooled re-
gime was found to correspond to the temperature below
which the dynamics of the system was influenced by its
energy landscape [16]. As in Ref. [16], the focus in most
molecular dynamics simulation studies on supercooled
liquids, with a few notable exceptions [17], has been on
atomic systems, which involve translational degrees of
freedom (TDOF) only [18].
06=96(18)=187801(4) 18780
We here investigate an equimolar mixture of Gay-Berne
ellipsoids of revolution and Lennard-Jones spheres along
an isochor at a series of temperatures down to the deeply
supercooled state [19]. The choice of such a system is
motivated by the success of binary mixtures of Lennard-
Jones spheres [20]. In our system [19], the interaction
potential between a sphere and an ellipsoid of revolution,
which is chosen to be a prolate (with aspect ratio � � 2), is
given by following Cleaver and co-workers [21]. We have
determined the energy and length parameters such that
neither any phase separation occurs nor any liquid crystal-
line phase with orientational order appears even at the
lowest temperature studied at a high density within the
simulation time [19,22]. Across the supercooled regime,
the translational diffusion coefficients for both the spheres
and the ellipsoids of revolution are found to follow a power
law temperature dependence: Dt � CD�T � Tc��D , with
Tc � 0:454 for the former and 0.460 for the latter. This,
within the error limit, is consistent with the MCT predic-
tion of a critical temperature Tc that is independent of
particle types [20].

In Fig. 1, we show the temperature dependence of the
average energy of the inherent structures for our binary
system. At high temperatures (T > 1:0), the average inher-
ent structure energy remains fairly insensitive to tempera-
ture variation. Below T ’ 1:0, this energy decreases
progressively up to the lowest temperature studied here.
We find that this crossover temperature corresponds to the
onset of nonexponential relaxation in the decay of the self
intermediate scattering function Fs�k ’ kmax; t� (data not
shown) [16]. The fall of the average inherent structure
energy is known to be consistent with the thermal sampling
of a Gaussian distribution of energies for the local minima
[15,23]. The latter, within the harmonic approximation,
predicts an inverse temperature dependence of the average
inherent structure energy [23]. We, however, observe two
distinct temperature regimes, in each of which the inverse
temperature dependence of the average inherent structure
energy holds true, with a change in the strength of this
dependence at a second crossover temperature T ’ 0:6 as
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FIG. 1. The average inherent structure energy per particle eIS

of our system as a function of temperature over the whole
temperature range studied. The inset plots eIS vs 1=T over the
temperature range across which the average inherent structure
energy is on a decline. The solid lines are the linear fits to the
data over two distinct temperature regimes.
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illustrated in the inset of Fig. 1. We now concentrate on the
dynamics of orientational degrees of freedom.

Figure 2(a) shows how the ratio of the first to second-
rank rotational correlation time, �1=�2, evolves as tempera-
ture drops. The lth rank rotational correlation time �l is
defined as �l �

R
1
0 C

�s�
l �t�dt, where C�s�l �t� is the lth rank

single-particle orientational time correlation function

(OTCF): C�s�l �t� �
h
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i
Pl�êi�0��êi�t��i

h
P

i
Pl�êi�0��êi�0��i

. Here êi is the unit vec-

tor along the long axis of the ellipsoid of revolution i, Pl is
the lth rank Legendre polynomial, and the angular brackets
stand for ensemble averaging. It is evident in Fig. 2(a) that
the ratio has at high temperatures �T > 1:0� a value close to
3 and starts declining steadily at T ’ 1:0 until it reaches a
value nearly unity at low temperatures. While the Debye
model of rotational diffusion which invokes small steps in
orientational motion predicts the ratio �1=�2 to be equal to
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FIG. 2. (a) The temperature dependence of �1�T�=�2�T�, the ratio o
a different scale (appearing on the right) shown again is the tempe
particle eIS for the purpose of comparison (circles). Inset: the values
to the stretched exponential form of the first- and second-rank singl
ellipsoids of revolution as a function of temperature. (b) The time evo
function at several temperatures with a shift in the time origin to t0 �
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3, a value for this ratio close to 1 is taken to suggest the
involvement of long angular jumps [10]. The ratio was
observed to deviate from the Debye limit at lower tem-
peratures in earlier molecular dynamics simulations [24],
which showed the Debye model to hold good at high
temperatures. The temperature dependence of the ratio
was subsequently interpreted by the coupling model [25].

At high temperatures, the long-time decay of C�s�2 �t� is
exponential while the Kohlrausch-Williams-Watts
stretched exponential form provides a reasonable fit to
the long-time behavior at low temperatures. To eliminate
the short-time Gaussian time dependence, we show in
Fig. 2(b) the time evolution of the function C�s�2 �t�
t0�=C

�s�
2 �t0� for t > t0, and consider the stretched exponen-

tial form exp����t� t0�=��T���2�T�� that takes into account
this transformation to fit the data. The deviation of the
exponent �2�T� [0<�2�T� � 1] from unity is a measure
of the degree of nonexponential relaxation. The inset of
Fig. 2(a) shows the temperature dependence �2�T� and
also �1�T�, the latter corresponding to the long-time decay
of C�s�1 �t� (not shown here). While both �1�T� and �2�T�
are very close to unity at high temperatures, they start
falling as temperature drops. It is evident that the stretching
is more pronounced in the second-rank OTCF than it is in
the first-rank OTCF as observed experimentally [26,27].
We note that the signature of nonexponential relaxation in
C�s�2 �t� first becomes appreciable and later gets progres-
sively more pronounced as temperature drops below the
onset temperature T ’ 1:0.

It follows from above that the onset of the growth of the
depth of the potential energy minima explored by the
system correlates with a change in the mechanism of
orientational motion from being simply diffusive. There
is evidence for the � relaxation to be diffusive in character,
and the orientational relaxation above TB is associated with
the � process only [10]. Thus, the onset temperature can be
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taken to correspond to the emergence of the � process as a
distinct mode of orientational relaxation and appears to be
coinciding with the bifurcation temperature TB. We, how-
ever, find that the latter is somewhat higher than Tc as
indeed observed in Ref. [12], on the contrary to what is
often believed. Stillinger interpreted the �� � bifurcation
in terms of the topography of the potential energy land-
scape [14]. In Stillinger’s picture, the � processes corre-
spond to the elementary relaxations between contiguous
basins while the � processes invoke escape from one
metabasin and eventually into other with an involvement
of high free energy of activation. Such a description is
consistent with the growth of the depth of the potential
energy minima explored by the system below the bifurca-
tion temperature.

We now address the decoupling between rotational and
translational diffusion. The combination of the SE and
DSE equations predicts the productDt�2 to be independent
of temperature even when the macroscopic observable
viscosity increases by many orders of magnitude on ap-
proaching the glass transition temperature Tg from above
[5]. Figure 3 shows that such a relationship breaks down at
T ’ 0:6 and below with the product growing fast with
decrease in temperature. The inset of Fig. 3 illustrates
that the decoupling between the two microscopic observ-
ables occurs at the same temperature at which both the
orientational correlation time �2 and the viscosity start
showing steady deviation from the Arrhenius temperature
behavior. The inset of Fig. 1 shows that at this temperature
the linear variation of the average inherent structure energy
with the inverse temperature undergoes a change with an
increase in the rate of fall.

In Fig. 4, we show the variation of the translational
diffusion coefficient Dt with the coefficient of shear vis-
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FIG. 3. The product of the translational diffusion coefficient
DE
t and the second-rank rotational correlation time �2 for the

ellipsoids of revolution as a function of temperature. Inset: the
inverse temperature dependence of the logarithm of �2 (circles).
On a different scale (appearing on the right of the inset) shown is
the inverse temperature dependence of the logarithm of the shear
viscosity (squares). The solid and dashed lines are the respective
Arrhenius fits to data over a restricted temperature range.
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cosity � in a log-log plot. The linearity of the curve implies
a power law dependence:Dt / �

��, � being the exponent,
for both the spheres and the ellipsoids of revolution. We
find � � 0:83 for the former and � � 0:75 for the latter.
The fractional power law dependence suggests the en-
hancement of translational diffusion relative to what the
SE relationship predicts. The � values obtained here com-
pare well with 0.74 and 0.77, observed by Ngai et al. and
Ediger and co-workers, respectively [28,29].

It is interesting to compare the temperature dependence
of Dt�1 with that of Dt�2 [30]. Dt�1 shows much weaker
temperature dependence, if at all (data not shown). This
follows from a weaker dependence of �1 on viscosity as
compared to �2. The observed behavior of Dt�1 with
temperature appears to pose difficulty to some explanation
for the decoupling between rotational and translational
diffusion in terms of dynamical heterogeneity [29,30].
On the other hand, such an observation is not inconsistent
with the coupling model [31], which invokes different
coupling parameters for translational and rotational diffu-
sion as well as for the first-rank and second-rank OTCFs
[7,26]. For the sake of comparison, we show in the inset of
Fig. 2(a) the temperature dependence of the stretch expo-
nent �D obtained by fitting the Fs�k; t� data for the ellip-
soids of revolution to the stretched exponential function.

Thus, it would be worthwhile to discuss the landscape
manifestation of dynamical heterogeneity in the view that
the latter is believed to play a central role in the decoupling
between rotational and translational diffusion [3,32]. The
diversity of the depth of the metabasins and of their con-
necting pathways in configuration space are expected to
result in a broad spectrum of relaxation times underlying
dynamical heterogeneity. A recent study has indeed found
the dynamics within and transitions between the metaba-
sins to be spatially heterogeneous [33]. When dynamical
heterogeneity in the present system was probed by the time
evolution of translational non-Gaussian parameter ��T�2 �t�
[19], the appearance of a shoulder in between the initial
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FIG. 4. The translational diffusion coefficient Dt vs the shear
viscosity � in a log-log plot for both the spheres (circles) and the
ellipsoids of revolution (squares). The solid and dashed lines are
the respective linear fits.
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rise and the subsequent growth of ��T�2 �t� to its maximum
value was observed. We find that the first appearance of the
shoulder upon decreasing temperature coincides with the
onset temperature.

In summary, we have established a correlation between
the breakdown of the Debye model of rotational diffusion
and the manner of exploration of the underlying potential
energy landscape in a model system. Further, the decou-
pling between rotational and translational diffusion is sig-
naled by a rise in the rate of fall of the average inherent
structure energy with the inverse temperature. Such corre-
lations between the decoupling phenomena and the fea-
tures of the energy landscape, to the best of our knowledge,
have not been demonstrated before.
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