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Continuous-Time Monitoring of Landau-Zener Interference in a Cooper-Pair Box
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Landau-Zener (LZ) tunneling can occur with a certain probability when crossing energy levels of a
quantum two-level system are swept across the minimum energy separation. Here we present experi-
mental evidence of quantum interference effects in solid-state LZ tunneling. We used a Cooper-pair box
qubit where the LZ tunneling occurs at the charge degeneracy. By employing a weak nondemolition
monitoring, we observe interference between consecutive LZ-tunneling events; we find that the average
level occupancies depend on the dynamical phase. The system’s unusually strong linear response is
explained by interband relaxation. Our interferometer can be used as a high-resolution Mach-Zehnder–
type detector for phase and charge.
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The Landau-Zener (LZ) tunneling is a celebrated
quantum-mechanical phenomenon, taking place at the in-
tersection of two energy levels that repel each other [1].
The LZ theory, developed in the early 1930s in the context
of slow atomic collisions [2– 4] and spin dynamics [5],
demonstrated that transitions are possible between two
approaching levels as a control parameter is swept across
the point of minimum energy splitting. The asymptotic
probability of a LZ-tunneling transition is given by [2–5]

PLZ � exp
�
�2�

�2

@v

�
; (1)

where v � d�"1 � "0�=dt denotes the variation rate of the
energy spacing for noninteracting levels, and 2� is the
minimum energy gap.

Yet for truly quantum-mechanical systems, more funda-
mental is the transition amplitude, which allows for inter-
ference. As two atoms collide, the wave-function phase
accumulated between the incoming and outgoing travers-
als varies with, e.g., the collision energy giving rise to
Stueckelberg oscillations in the populations [6]. Typi-
cally, however, the phase is large and rapidly varies with
energy, which allows one to average over these fast oscil-
lations [4,7], neglecting the interference.

Recently, quantum coherence in mesoscopic Josephson
tunnel junctions has been investigated extensively [8–11].
In these artificial two-level systems, energy scales can
easily be tuned into a range feasible for studies of funda-
mental phenomena. We used a charge qubit based on a
Cooper-pair box (CPB) to obtain the first evidence of
quantum interference associated with Landau-Zener tun-
neling in nonatomic systems. A continuous nondemolition
measurement developed by us [12], which provides mini-
mal backaction to the qubit, allowed for monitoring the
average level occupancies of the CPB and thus observation
of the LZ interference.

Our CPB is a single-Cooper-pair transistor (SCPT) em-
bedded into a superconducting loop. The island has the
charging energy EC � e2=�2C� � 1 K, and the junctions
06=96(18)=187002(4) 18700
have the Josephson energies EJ�1� d�, where d quantifies
the asymmetry. The SCPT is equivalent to a CPB, but with
a Josephson energy of 2EJ cos��=2� tunable by the super-
conducting phase across the two junctions, � � 2��=�0.
When EC � EJ, the Hamiltonian of the CPB is conven-
iently written in the eigenbasis fj2neig of the island charge
operator, taking only two charge states into account:

H � �
1

2
Bz�z �

1

2
Bx�x �

��ng� ��
�� ���ng�

� �
; (2)

where � � � 1
2Bz � �2EC�1� ng� and � � 1

2Bx �
EJ cos��=2�. The asymmetry d � 0 in Josephson energies
would limit the minimum off-diagonal coupling j�j. The
eigenvalues of Eq. (2), E0�ng;�� and E1�ng;��, are the
two lowest bands as illustrated by Fig. 1(a). By j0i �
	1; 0
T and j1i � 	0; 1
T, we denote the corresponding
�ng;��-dependent eigenfunctions. Far from the crossing,
they are roughly charge eigenstates.

The Hamiltonian of Eq. (2) is similar to the original LZ
problem, and the linearly growing band gap E1 � E0 �

"1 � "0 � 4EC�1� ng� has the minimum 2� at the charge
degeneracy (avoided crossing) at ng � 1. As ng is swept
through this point (similar to the interatomic distance
during a collision), one obtains the asymptotic transition
probability between levels 0 and 1 as in Eq. (1). This kind
of incoherent limit of the LZ problem has also been ob-
served in superconducting qubits [10].

More fundamentally, however, the asymptotic probabil-
ity in Eq. (1) comes from the unitary transformation taking
place at the avoided crossing [13,14]:

U1 �
cos��=2� exp�i ~�S� i sin��=2�

i sin��=2� cos��=2� exp��i ~�S�

 !
: (3)

Here, sin2��=2� � PLZ. The phase jump ~�S � �S � �=2
is due to the Stokes phase �S related to the general Stokes
phenomenon [15]. It depends on the adiabaticity parameter
� � �2=@v [cf. Eq. (1)], viz., �S � �=4� arg	��1�
i��
 � ��ln�� 1�, where � is the Gamma function. In
2-1 © 2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.96.187002


0 1 2
0

20

60
B

an
d 

en
er

gi
es

, G
H

z

E0

E1

AB

C D40

 ng

E0
odd

a b

ϕ

U1

U4

ϕ
U2

O

U1

ϕL = 2π +2|φS|~

ϕR = 2|φS|~

θ

|0e>

|2e>

φS
~φS

~

U2

U3=U1
U4

θ

FIG. 1 (color online). Landau-Zener interference in a CPB.
(a) The energy diagram: As ng is modulated, the CPB evolves
from the initial state A through the avoided crossing O (ng � 1)
towards B (no LZ tunneling) or C (with LZ tunneling). On the re-
turn journey, the final state D is reached by remaining on the ex-
cited band (from C) or by LZ tunneling (from B). The dynamical
phases ’L;R are accumulated between O and the turning points.
The uppermost dashed line represents the odd parity state Eodd

0 .
(b) Interpretation of one cycle of LZ interference as four spin ro-
tations on the Bloch sphere, with one possible set of ’L;R yield-
ing constructive interference (see text). The black arrows indi-
cate the final position of the Bloch vector after each step. Num-
ber states of the island charge j2nei are aligned along the z axis.
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FIG. 2 (color online). Schematics of our experiment. (a) The
resonant frequency f0 � 800 MHz of the lumped-element LC
circuit is tuned by the Josephson capacitance Ceff of the CPB
shown in the scanning electron micrograph. The maximum CPB
Josephson energy 2EJ � 12:5 GHz could be tuned down to
2.7 GHz by magnetic flux �. The total junction capacitance
amounts to CJ � C1 � C2 � 0:44 fF, yielding a Coulomb en-
ergy of e2=2�CJ � Cg� � 1:1 K. (b) Ceff calculated for the two
lowest levels of our CPB with EJ=EC � 0:27 and asymmetry
d � 0:22, at � � 0.
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the adiabatic limit �S ! 0, and in the sudden limit �S �
�=4. On the Bloch sphere, a single LZ event [Eq. (3)] is
seen as a combination of x and z rotations [U1 and U3 in
Fig. 1(b)].

The natural manner to look for quantum coherence in LZ
tunneling is to repeat the level crossing faster than the
relevant time scales, as suggested by Shytov et al. [16].
Indeed, subsequent LZ-tunneling events with time interval
�p can interfere, provided phase coherence is preserved
and these events do not overlap [13,14], �z < �p < �coh.
Here, the time of an LZ-tunneling event [17] is �z ����������
@=v

p
max�1;

��������������
�2=@v

p
�. In charge qubits, it is easy to

make �z 
 �coh, where the coherence time is �coh �
min�T1; T2� with T1 and T2 corresponding to the relaxation
and dephasing time, respectively. For example, � �
2 GHz and v � 40 GHz per 1 ns give �z � 0:1 ns, which
is well within experimental reach.

To generate the required conditions, we used a strong
gate charge sweep ng�t� � ng0 � �nrf sin�!rft�, in general
offset from the crossing point. One cycle takes the CPB
twice through the crossing and involves two dynamical
phase shifts ’L and ’R, on the left and right sides:

’ � �
1

@

Z
	E1�ng�t��� E0�ng�t��
dt: (4)

During a single drive cycle, the state vector evolves
according to the transformation U � U4U3U2U1, which
is illustrated in Fig. 1(b) as successive spin rotations (� are
the Pauli matrices, and U3 � U1):

U � exp��i12’R�z�U1 exp��i12’L�z�U1: (5)
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The transition amplitude pAD � h�j1i � h0jU
yj1i is the z

projection of the Bloch vector. Evaluating Eq. (5) we find
pAD � i exp�i’R=2� cos�’L=2� ~�S� sin���, and the
probability PAD � jpADj

2 of reaching the point D:

jpADj
2 � 2PLZ�1� PLZ�	1� cos�’L � 2 ~�S�
: (6)

It is easy to see in Fig. 1(b) that PAD is generally maxi-
mized (constructive interference) when the z rotations
bring the Bloch vector back to the starting meridian, for
then the total x rotation is maximized. This is achieved
when the total phase ’L � 2 ~�S is a multiple of 2�. Under
continuous driving, this has the obvious generalization
which corresponds to the Bloch vector rotating stepwise
around a fixed axis in the x-y plane; the condition

’L;R � 2 ~�S are multiples of 2� (7)

ensures constructive interference (50% time-averaged pop-
ulations of both levels). For example, in the adiabatic limit,
’L;R have to be odd multiples of �. The resonance con-
ditions in Eq. (7) are seen overlaid in Fig. 3 (see below) as
the black solid and dashed lines.

Our experimental scheme is illustrated in Fig. 2. The
weak, continuous measurement signal tracks the time av-
erage, subject to a strong LZ drive, of the Josephson ca-

pacitance of a CPB: Ceff /
@2E��;ng�

@n2
g

, probed at f0�

803 MHz. The scheme is discussed in detail in Ref. [12].
The difference in Ceff for the levels 0, 1 allows us to
determine the average state of the CPB (see the discussion
below).

We made extensive scans of the CPB reflection by
varying the LZ-drive frequency frf � 0:1–20 GHz and
its amplitude �nrf � 0–3 electrons, as well as the qubit
bias ng0 and �. We observe a clear interference pattern
(Fig. 3) whose main features confirm the coherent
LZ-tunneling picture: (1) onset of the interference speckles
where the rf drive just reaches the avoided crossing, with
2-2
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FIG. 3 (color online). Interference patterns, measured via the microwave phase shift. (a) frf � 4 GHz and phase � � 0 (i.e., level
repulsion 2� � 2EJ � 12:5 GHz). The color codes indicate the equivalent capacitance obtained using standard circuit formulas.
Around ng0 � �1, the conditions of constructive Landau-Zener interference are illustrated: ’L � 2 ~�S (solid lines) and ’R � 2 ~�S

(dashed line) are multiples of 2� [see Eq. (7)], with the v-dependent Stokes phase�S. The highest (red) population of the upper state is
expected when both conditions are satisfied. The equicapacitance contour Ceff � 0 around ng � 1, obtained from the simulation of the
Bloch equations (Fig. 4), agrees well with the predicted resonance grid and with the data. (b) The corresponding measurement with
frf � 7 GHz. (c) The average gate spacing between the central interference peaks [see (a)], for the phase bias 0 (square) and � (circle).
The expected linear behavior yields a fit EC � 1:1, about 25% higher than we obtained by rf spectroscopy [12].
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a linear dependence between ng0 and the rf amplitude;
(2) the density of the dots is proportional to 1=frf in the
direction of ng0 as well as �nrf ; (3) the pattern loses its
contrast below a certain drive frequency, here at frf �
2 GHz, due to the loss of phase memory over a single
LZ cycle. Note also the destructive interference dots at
high drives, where the qubit remains basically on the low-
est level, thus vindicating the ‘‘coherent destruction of
tunneling’’ [18].

We attribute the slight asymmetries in the data with
respect to ng � �1 to background charge drift caused by
the strong rf drive. The theory grids in Figs. 3(a) and 3(b)
were calculated by the v-dependent Stokes phase �S.
However, since the Stokes phase amounts typically only
to a 10%–20% shift of the grid, roughnesses in the data do
not allow a clear verification of such a small effect.

The patterns are 2e periodic in ng0 at weak rf excitation.
At stronger excitation on the order of e=2, an additional,
shifted pattern makes the signal almost e periodic
[Fig. 3(a)]. The origin of these odd sectors can be under-
stood from the energy diagram in Fig. 1: When the rf drive
brings the system past a crossing point of E1 and Eodd

0 , it
becomes energetically favorable to enter an odd particle-
number state [19], resulting in a shift by e in the interfer-
ence pattern.
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According to Eq. (7), the phase difference ’� � ’L�

’R ’ 2� 4EC�ng0�1�
@!rf

is a multiple of 2� at resonances, im-
plying the location of the population peaks on the lines of
fixed rf amplitude with spacings �ng0 � @!rf=�2EC�. We
observe the expected linear frequency dependence, as il-
lustrated in Fig. 3(c).

The magnitude of the response in Fig. 3 forces one to
study a complicated relation between the relevant time
scales. Ceff�ng0� generally has contributions from how
both the energies and populations depend on ng.
Furthermore, one has to time average over the strong LZ
swing in ng�t�. Therefore, we have

Ceff�ng0� /

�
d2

dn2
g
	p0�ng�E0�ng� � p1�ng�E1�ng�


�
: (8)

The dominant contribution is determined by the rela-
tive magnitude of the time scales of the LZ drive 1=frf ,
time of the measurement swing 1=f0, and the relaxation
time T1 (we suppose frf � f0). (a) Long relaxation time,
T1 � 1=f0. During the measurement swing, populations
do not relax into their quasiequilibrium values,
d2=dn2

g�p0;1�ng�� � 0 and Ceff is small. (b) A short relaxa-
tion time, T1 
 1=f0. The populations follow p0;1�ng�
according to the instantaneous ac gate charge due to the
2-3
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FIG. 4 (color online). Calculated Ceff , using Bloch equations
and linear-response theory, with � � 0:04, �nac � 0:06e pp.
The inclined white lines indicate the threshold of the LZ tunnel-
ing, where the driving signal ng�t� touches, but does not cross, a
degeneracy point. The comparison with data in Fig. 3 is per-
formed by the equicapacitance contours for Ceff � 0 fF.
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measurement swing, and Eq. (8) gives a large Ceff .
(c) Intermediate case. This corresponds to our experiment,
where T1 � 5 ns� f0 � 1 ns. The value of Ceff is between
(a) and (b). Therefore, we have a somewhat unexpected
result that the magnitude of the measured response can be
increased by relaxation.

To begin with, we numerically solved the Bloch equa-
tions [20,21]. We assumed that the T1 and T2 relaxa-
tion times are dominated by charge noise, modeled by an
Ohmic bath with the strength � � �1� 	C1 � C2
=
Cg�

�2 2e2

h R, where R is the effective impedance of the
gate voltage circuit. For our sample, �� 10�2 due to
strong coupling to the environment via the gate. Various
descriptions of dissipation are expected to yield the same
result: one can show that in the description of crossing a
narrow degeneracy region, dissipation can be effectively
described by a few constants (cf. Ref. [16]).

In order to properly include the interplay between the
time scales as described above, we used the linear-response
theory to extract Ceff , with a weak measurement ac signal
on, of amplitude �nac � Cg�Vac. We calculate the time-
dependent expectation value for the charge Qg on Cg, viz.,
hQgi�t� � Tr�	 �Qg�, where Qg � Cg��Vac � dE=edng�,
and the density matrix is expressed in the energy eigenba-
sis. From hQgi�t� we pick up its quadrature components,
Q!in

and Q!out
, at the measurement frequency. The pres-

ence of the small resistive component Q!out
is equivalent to

having dissipation. By modeling the input impedance as
Ceff in series with a small resistor, we find from the

imaginary part Ceff �
Q2
!in
�Q2

!out

Q!in
�Vac

. The resulting capacitance

at frf � 4 GHz is illustrated in Fig. 4. The values � � 0:04
and �nac � 0:03 were taken in order to match the mea-
sured pattern. This corresponds at the degeneracy point to
T2 � 0:5 ns which is close to other estimates. The calcu-
lation is seen to reproduce the major features of the mea-
sured interferograms [22].

The LZ interference in Fig. 1(a) can also be interpreted
as two partial waves, AOBOD and AOCOD, similarly to an
18700
optical Mach-Zehnder interferometer [23]. We propose to
apply the LZ interferometry for sensitive detection of
phase and charge [12,24–26], where it can be viewed as
integrating phase amplifier for the superconductor phase�
across the device. The interferometer transforms tiny
changes of � (or magnetic flux �) into a huge modulation
of the wave-function phase ’ by basically integrating the
hatched area [11] in Fig. 1, but with a limitation on the
measurement signal amplitude.
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