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Dynamical Response of Nanomechanical Oscillators in Immiscible Viscous Fluid
for In Vitro Biomolecular Recognition

Jerome Dorignac,1,2 Agnieszka Kalinowski,3,* Shyamsunder Erramilli,1,3 and Pritiraj Mohanty1

1Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA
2College of Engineering, Boston University, 44 Cummington Street, Boston, Massachusetts 02215, USA

3Department of Biomedical Engineering, Boston University, 48 Cummington Street, Boston, Massachusetts 02215, USA
(Received 11 February 2006; published 11 May 2006)
0031-9007=
Dynamical response of nanomechanical cantilever structures immersed in a viscous fluid is important to
in vitro single-molecule force spectroscopy, biomolecular recognition of disease-specific proteins, and the
study of microscopic protein dynamics. Here we study the stochastic response of biofunctionalized
nanomechanical cantilever beams in a viscous fluid. Using the fluctuation-dissipation theorem we derive
an exact expression for the spectral density of displacement and a linear approximation for resonance
frequency shift. We find that in a viscous solution the frequency shift of the nanoscale cantilever is
determined by surface stress generated by biomolecular interaction with negligible contributions from
mass loading due to the biomolecules.
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From single-molecule force spectroscopy [1] to biomo-
lecular recognition of disease-specific proteins such as
cancer antigens [2], micron-sized cantilevers have proved
to be fundamental to the ultrasensitive detection of small
forces. Usually, forces are detected by measuring the de-
flection of the cantilever. In the dynamic case, shift in the
resonance frequency of the cantilever is used to infer the
magnitude of force. Micromachining techniques now en-
able commercial production of such cantilevers with di-
mensions on the order of 100 �m as well as their routine
use in force spectroscopy.

Decreasing the cantilever dimensions to submicron or
nanometer scales increases resonance frequency to the
megahertz-gigahertz range. The resultant increase in the
dynamic range and the measurement speed can provide a
better tool for probing single molecules. This could be also
used for more sensitive bioimaging techniques and moni-
toring real-time binding kinetics of ligand-protein binding.
For biomolecular recognition in a viscous fluid, force sen-
sitivity can be increased by decreasing the effective viscous
damping. Nanoscale cantilevers are hence expected to have
dramatically enhanced force sensitivity as smaller canti-
levers have lower viscous damping.

In spite of the importance of nanomechanical cantilevers
for ultrasensitive in vitro force detection, there is no widely
accepted description that relates resonance frequency
change to concentration or mass loading, over the entire
range of viscosity relevant to biomolecular recognition in
viscous fluids. In this Letter, starting with a model pro-
posed by Sader [3], we describe the hydrodynamics of a
beam, immersed in a viscous fluid, while one of its sides is
entirely biofunctionalized. We generalize this model by
including an additional term that takes into account the
surface stress induced by the layer of mutually interacting
biomolecules trapped on the functionalized part of the
beam and derive its exact thermal vibrations. We find
that, in air, frequency shift of the first nanoscale cantilever
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mode is primarily determined by surface stress, while
mass-loading effects become relevant for higher order
modes. More importantly, in a viscous solution such as
water, frequency shift is dominated by surface stress rather
than biomolecular mass loading, contrary to conventional
expectation.

Model.—Neglecting rotatory inertia, shear deformation,
and internal damping, the equation of motion for the de-
flection y�x; t� of a beam with length L, width b, and
thickness d, immersed in a fluid at temperature T and
loaded by a constant axial force S, is given by [3,4]

EI
@4y

@x4 � S
@2y

@x2 ���x�
@2y

@t2
� fh�x; t� � fth�x; t�: (1)

E and I are the Young’s modulus and moment of inertia of
the (coated) beam, respectively. Thermal vibrations of the
beam are induced by the Brownian (Langevin) force per
unit length fth�x; t�. They are small enough for nonlinear
convective inertial effects in the fluid to be neglected and
for the hydrodynamic loading fh�x; t� to be linear in the
beam displacement [3]. The linear mass (mass per unit
length) of the system��x� consists of the linear mass of the
beam �b, and the linear mass of the trapped biomolecules
�l�x�. The axial load S introduced in Eq. (1) describes the
mutual interaction of biomolecules adsorbed on the beam
[5]. The boundary conditions for Eq. (1) are given by
y�0; t� � y0�0; t� � 0, y00�L; t� � 0, and EIy000�L; t� �
Sy0�L; t�, where primes denote spatial derivatives [4].

At higher concentrations, the biomolecules form a uni-
form layer with linear mass �l and thickness h so that

��x� � �b ��l � constant: (2)

The mutual interaction of biomolecules within the layer is
modeled by taking into account the stress � they generate
on the coated surface of the beam. As shown in Ref. [2],
this stress enables the bending of the silicon-nitride micro-
cantilevers with length to thickness ratio L=d, ranging
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from 102 to 103. The resulting static deflection, on the
order of a few tenths of microns, is related to surface stress
by Stoney’s formula [6]. However, for the silicon nano-
mechanical cantilevers under investigation here (L=d�
50), Stoney’s formula typically yields angström-level
bendings (10�5 L). So these nanocantilevers remain al-
most straight under the influence of surface stress.
Nevertheless, as shown in [5], this stress induces an effec-
tive axial load, S � �L, that must be included in Eq. (1). In
vacuum, such a model has been studied in Ref. [7].

In addition, biomolecular interaction on the surface
results in an effective Young’s modulus of the layer El
[see Ref. [8] ]:

EI � EbIb � ElIl ’ Ebbd
3=12� Elhbd

2=4: (3)

EbIb and ElIl are the respective bending rigidities of the
beam and the layer (the last equality holds when h� d).
In the opposite limit, biomolecules with mass m sparsely
scattered over the beam at locations xi result in

��x� ��b��l�x� ��b�m
X
i

��x� xi�; xi 2 �0;L	:

(4)

If the average spacing is large compared to their size, their
mutual interaction is negligible and S � 0. Considering
that their presence does not substantially affect the moment
Ib of the beam, the bending rigidity of the whole system is
the same as for an unloaded beam, EI � EbIb.

Equations of Motion.—To solve Eq. (1), we expand the
deflection y�x; t� and the force densities fh�x; t� and fth�x; t�
in terms of the modes of the bare beam, defined as the
beam without the added mass [�l�x� � 0] though it in-
cludes the tension S � �L:

y�x; t� �
X1
n�1

yn�t��n���; � � x=L: (5)

Similar expressions hold for the force densities. The eigen-
modes �n��� satisfy the following conditions:
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(6)

The self-adjointness of Eq. (6) makes the modes orthonor-
mal:

R
1
0 �n����l���d� � �n;l. From Eq. (6), the eigenval-

ues �n are the successive positive roots of

1� �1� "2
n� cosh��n cos��n � "n sinh��n sin��n � 0; (7)

where "n � �=�2�2
n� and �
n � �n�

��������������
1� "2

n

p

 "n	

1=2.
Note that, for "n � �=�2�2

n� � 1, Eq. (7) reduces to the
usual clamped-free equation, 1� cos�n cosh�n � 0. As
�n / n for large n, eigenvalues for which n�

����
�
p

are
essentially independent of the surface stress.

Let��x���b��l�x�. Using Eq. (5), Eq. (1) reduces to

M �yn�t�� knyn�t��
X1
j�1

�nj �yj�t� � Fn;h�t��Fn;th�t�: (8)
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M � �bL is the mass of the beam and Fn;h�th��t� �
Lfn;h�th��t�. The effective stiffness of mode n is

kn � EI�4
n=L3: (9)

The real and symmetric matrix has components

�nj � L
Z 1

0
�l��

0L��n��
0��j��

0�d�0: (10)

If �l�x� � �l, then � � Ml1, where 1 is the identity
matrix and Ml � L�l is the layer mass. Equation (8)
decouples and the mass of modes yn becomes the total
mass of the system, M�Ml. But nonuniform mass distri-
butions as in Eq. (4) couple the bare modes of the beam.

Taking the Fourier transform of Eq. (8) and using the
expression for the hydrodynamic force [9],

F̂ n;h�!� � Mf!
2��!�ŷn�!�; (11)

where Mf �
	
4 L
fb

2 is the mass of the fluid loading the
beam and ��!� � �r�!� � i�i�!� is a complex ‘‘hydro-
dynamic function’’ discussed in detail in [3], we obtain

��!�jŷ�!�i � jF̂th�!�i: (12)

Kets jvi are column vectors with components vi, i 2 N.
The non-Hermitian matrix ��!� is given by

��!� � �0�!� �!2 ~�; (13)

where

�0�!�nj � fkn �!
2�Mf��!� �Mn	g�nj

~�nj � �nj�1� �nj�; Mn � M��nn:

Spectral densities.—As the dissipative (imaginary) part
of the hydrodynamic function is frequency dependent, we
apply the generalized fluctuation-dissipation theorem [10]
to derive the power spectrum matrix of the stochastic

forces Fn;th, SF̂�!� � jF̂th�!�ihF̂th�!�j
s

(the overline de-
notes thermal averaging, the superscript s refers to the
spectral density, and hF̂thj is the Hermitian conjugate of
jF̂thi):

SF̂�!� �
kT
i!
��y�!� ���!�	 � 2kTMf!�i�!�1; (14)

where k is the Boltzmann constant and T the temperature.
In components, this yields

F̂n;th�!�F̂
�
p;th�!

0� � 2kTMf!�i�!��np��!�!0�: (15)

Notice that this expression does not depend on �. It is the
same as for a bare beam. As seen above, the stochastic
forces acting on distinct modes are uncorrelated.
Nevertheless, their power spectrum is not constant, con-
trary to the assumption made in Ref. [3], for the frequency
dependence of the dissipative part of the hydrodynamic
function makes them non-Markovian. Equation (15) is the
generalization of the expression derived by Paul and Cross
for a single cantilever mode [11]. Now, inverting Eq. (12),
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we obtain

jŷ�!�i � ��!�jF̂th�!�i; ��!� � ��1�!� (16)

and jŷ�!�ihŷ�!�j � ��!�jF̂th�!�ihF̂th�!�j�
y�!�. Spectral

averaging the latter and using Eq. (14), we find the power
spectrum matrix of the deflection modes

Sŷ�!� � 2kTMf!�i�!���!��y�!�: (17)

Introducing j��i with components �n���, the Fourier
transform of the deflection (5) reads ŷ�x;!� � h��jŷ�!�i
and using Eq. (17), we find its spectral density to be
18610
jŷ�x;!�j2
s
� 2kTMf!�i�!�h��j��!��y�!�j��i: (18)

The total mass of the particles trapped on the beam Ml is
small compared to the mass of the beam. This justifies
treating !2 ~� perturbatively provided its elements stay
small compared to the diagonal elements of �0�!�. This
is indeed the case [12] provided Mf�i�!� � 4Ml. By
inverting Eq. (13), we obtain in first order in ~�

��y � �0�
y
0 �!

2�0� ~��0 � �
y
0

~���y0 �O� ~�2�; (19)

where �0 � ��1
0 . Reinstating in Eq. (18), we finally get
jŷ�x;!�j2
s
� 2kTMf!�i�!�

�X1
n�1

�2
n���

M2
njAnj

2 � 2!2
X1
n�1

X1
p�1

�n����p��� ~�npR�Ap�

M2
nMpjAnj

2jApj
2 �O� ~�2�

�
: (20)
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FIG. 1. Inset: schematic diagram of the beam with a layer of
molecules on its functionalized side. Main figure: exact spectral
density of the deflection slope of a silicon nanobeam without
molecular layer. Calculations done in air and water (solid lines)
compared to Sader’s results [3] (dashed lines).
In this expression, � � x=L, ~�np is given by Eq. (14), and
the quantity An � �0�!�nn=Mn reads

An � !2
n �!

2�1� �n��!�	; (21)

where !n �
��������������
kn=Mn

p
is the frequency in vacuum, �n �

Mf=Mn, and <�An� is the real part of An. An expression
similar to Eq. (20) can be derived for the slope of the
deflection provided �j��� is replaced by �0j��� and the
overall prefactor is divided by L2.

Expression (20) is valid for any mass distribution �l�x�
along the beam. For a uniform layer with linear mass �l,
�np � L�l�np, and then ~�np � 0. All modes have the
same effective mass, Mn � M� L�l, and are decoupled.
Reinstating in Eq. (20), the second term vanishes and we
obtain the exact spectral density of a composite beam
consisting of the original beam plus the layer. For mole-
cules trapped on the beam at positions �i, the mass profile
given in Eq. (4) leads to �np � m

P
i�n��i��p��i� and

Eq. (20) is valid up to first order in m provided the
frequency satisfies Mf�i�!� � 4Ml. Interestingly, if we
assume N molecules to be randomly scattered along the
beam in a uniform way and average �np accordingly, we
find hh�npii � m

P
i

R
�n��i��p��i�d�i � Nm�np. As the

total mass of the trapped molecules is small compared to
the mass of the beam, in the first approximation, the
average spectral density is the same as the spectral density
of their average mass distribution—i.e., the spectral den-
sity of a uniform layer of mass Nm.

In Fig. 1, we compare the bare beam (� � 0) spectral
density of the deflection slope at the tip of a rectangular
silicon nanocantilever (E � 160 GPa, 
 � 2:33

103 kg=m3) to Sader’s result [3] in air and water. The
beam dimensions are d
 b
 L � 0:2
 0:2
 10 �m.
From [13], at T � 27 �C, the viscosities are �air � 1:86

10�5, �water � 8:59
 10�4 kg=�m:s� and the densities are

air � 1:18, 
water � 997 kg=m3. Typical values for the
Reynolds number defined as [3] Re � 
fb2!=4� are
Reair ’ 0:01 and Rewater ’ 0:036 at resonance. Although
different, Sader’s formula can be shown to reduce to (20)
provided �j��!�j � 1. This explains why the results are
very similar in air [�j��!�j ’ 0:06 at resonance] while
they start to differ in water [�j��!�j ’ 25 at resonance].

Frequency shift.—As stated earlier, when trapped mole-
cules form a uniform layer, the exact spectral density of the
beam deflection is given by

jŷ�x;!�j2
s
�

2kTMf!�i�!�

�M�Ml�
2

X1
n�1

�2
n���

jAnj
2 ; (22)

where Ml is the mass of the layer and where An is given in
Eq. (21) with Mn � M�Ml. When the peaks of Eq. (22)
are sharp enough, the hydrodynamic function is almost
constant in their vicinity and the resonant frequency sat-
isfies the self-consistent equation:

!2
R;n � f�!R;n;Mn�kn; f�

1

3

R�
���������������������
4R2� 3I2
p

R2� I2 ; (23)

where R � Mn �Mf�r, I � Mf�i, and �r;i � �r;i�!R;n�.
From the expression (23), the mass and stiffness variations
due to the layer, �M and �kn, induce a relative frequency
shift between a bare and a loaded beam:

�!R;n

!R;n
�

1

2�!R;n
@ lnf
@!R;n

�
�kn
kn
�
@ lnf
@M

�M
�
: (24)
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FIG. 2. Relative frequency shift (in %) in air and water vs the dimensionless stress, � � �L3=EI. Ml � M=100 and El � 0. Other
parameters are the same as in Fig. 1. Solid line: exact result from Eq. (22). Dotted line: linear approximation from Eqs. (24) and (25).
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Here, �M � Ml and its prefactor in Eq. (24) takes into
account dissipative (Mf�i) and fluid mass loading (Mf�r)
effects. According to (9), the two contributions to the
stiffness �kn come from the bending rigidity, EbIb !
EbIb � ElIl, and from the surface stress through the eigen-
value �n���. From Eqs. (3) and (7), we find

�kn
kn
�

3hEl
dEb

�
2Tntn � �0;n�Tn � tn�

�3
0;n�tn � Tn�

�; (25)

where �0;n is the nth root of cosh��� cos��� � 1 � 0 and
where Tn � tanh�0;n, tn � tan�0;n. The last term of (25)
has been obtained from (7) in perturbation. It is valid when
�� n2 and vanishes as n! 1.

Using the same data as in Fig. 1, we display in Fig. 2 the
relative frequency shift in air (left) and water (right) versus
the dimensionless surface stress �. The exact shift is
evaluated from the spectral density in Eq. (22) and com-
pared to its linear approximation in Eq. (24). The layer
mass has been arbitrarily fixed to 1% of the beam mass
and El set to zero, hence the negative offset observed in
air at � � 0. For typical values of the surface stress, ��
10�2 J m�2 [see Wu et al. in Ref. [2] ], j�j & 1. In air,
�j��!R;n�j � 1, and f� 1=M. Then, @ lnf=@M�
�1=M, @ lnf=@!R;n � 0, and we recover the usual fre-
quency shift for a linear oscillator in vacuum. As seen on
the left panel, the first peak is the most sensitive to �. The
deviation of the data from the linear result in Eq. (25)
indicates that the condition �� n2 with n � 1 becomes
violated. This effect disappears for the second and third
peaks that are less sensitive to �. In water (right panel), a
single broad peak occurs. Equation (23) loses its accuracy
but the frequency shift in Eq. (24) derived from it is still
acceptable. The contribution of @ lnf=@M becomes negli-
gible while @ lnf=@!R;n ��@ ln�i=@!R;n becomes im-
portant, hence the increase in the slope of the relative
frequency shift versus � in water compared to air.

In conclusion, we treat the thermal response of biofunc-
tionalized nanocantilevers with a generalized fluctuation-
dissipation relation. In a viscous fluid like water, the reso-
18610
nance frequency shift for a continuous distribution of bio-
molecules on the cantilever surface is found to be
dominated by surface stress rather than the mass loading
of biomolecules.
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