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Microscopic Structure and Elasticity of Weakly Aggregated Colloidal Gels
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We directly probe the microscopic structure, connectivity, and elasticity of colloidal gels using confocal
microscopy. We show that the gel is a random network of one-dimensional chains of particles. By
measuring thermal fluctuations, we determine the effective spring constant between pairs of particles as a
function of separation; this is in agreement with the theory for fractal chains. Long-range attractions
between particles lead to freely rotating bonds, and the gel is stabilized by multiple connections among the
chains. By contrast, short-range attractions lead to bonds that resist bending, with dramatically suppressed

formation of loops of particles.
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When colloidal particles have an attraction between
them, they can gel and form an elastic solid. Provided
the strength of this attractive interaction, Uy, is suffi-
ciently large, a gel can form at arbitrarily low initial
volume fractions, ¢ [1-3]. The elastic modulus of the
resultant gel depends sensitively on both the nature and
strength of the interparticle interaction and on the topology
and connectedness of the gel [4—8]. This elasticity makes
colloidal gels fascinating materials; it also imbues them
with important practical properties, as the gels can form
elastic materials with minute quantities of solids and are
able to withstand significant shear stresses while still flow-
ing freely once they yield. The essential structure of these
gels is understood, provided that their formation results
from kinetic aggregation: They are fractal on length scales
up to a correlation length, ¢, and homogeneous on larger
length scales. Both £ and the fractal dimension d; depend
on the details of the aggregation. The elasticity of the
networks is inherently much more complex than the struc-
ture, but can also be understood within this general scaling
picture: The elastic modulus is G ~ «(&)/&, where k(§) is
the spring constant of a cluster of length £. This estimate is
again predicated on the assumption that the sample is
homogeneous at length scales above ¢ and fractal at shorter
length scales. The spring constant is estimated by assuming
that the cluster is dominated by a single chain; the fractal
nature makes this chain somewhat tortuous, and it is as-
sumed that its contour length, L, scales with its end-to-end
length, L ~ §d’7, where d,, is the bond, or chemical dimen-
sion, whose value is 1.2 = 0.1 [9,10]. It is also generally
assumed that the bonds between neighboring particles
resist bending, and this is the dominant contribution to
the chain’s elasticity. As a result, «(&)~ ko/(£%r7)
[11], where r; is the radius of gyration of the chain
perpendicular to the line joining the two ends and r;
& in fractal gels [9]. Recent measurements of isolated
chains of particles with rigid bonds confirmed this scaling
of k(&) [12]. Since & ~ a¢p~'/34) where a is the particle
radius, the resultant ¢ dependence of the elastic modulus
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of a gel is G ~ k¢! 724»)/3=dp) This scaling description
is in good agreement with data for kinetically aggregated
colloidal gels [5,13—-15]. However, this agreement is re-
stricted to the ¢ dependence of G; a more critical test of
the underlying physics would require visualization of gel
topology and measurement of the scaling of the spring
constant within the clusters at length scales less than £.
Because of the difficulty of measuring both topology and
local elasticity of a colloidal gel, such a test has never been
performed.

In this Letter, we present real-space, three-dimensional
images of colloidal gels that provide a direct probe of the
detailed topology of a colloidal gel; we complement this
with a measure of the scaling of the local spring constant
determined by the thermal fluctuations of the network,
directly observed with the confocal microscope. The at-
tractive interaction that leads to gelation is induced by
depletion, allowing us to vary the range of the attraction.
We find unexpected dependence on this range: For a very
short-ranged potential, the physical picture of the topology
of the gel is in good accord with expectations, and the
scaling model for the elasticity provides excellent agree-
ment with the data. However, for a longer-range potential
(but still <2% of the sphere diameter), the expected cen-
trosymmetric behavior of the depletion interaction seems
to apply; this leads to a dramatically different morphology
of the network and different scaling of the elastic modulus
with length. These measurements provide new, critical
insight into the properties of colloidal gels and the essential
relationship between their topology and their elasticity.

Our gels are made from monodisperse, sterically stabi-
lized poly(methyl methacrylate) spheres [16] of radius a =
0.75 pm and with ¢ = 0.03 to 0.05. They are suspended in
a mixture of organic solvents chosen to match closely the
particle density and refractive index [9,17,18], eliminating
effects of sedimentation and allowing optical visualization
deep within the sample. Particles are labeled with fluores-
cent thodamine for observation with confocal microscopy
[17]. The depletion attraction [19-22] is induced through
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the addition of nonadsorbing polystyrene with molecular
weights, M,, of 9.6 X 10*, 195X 10% or 11.6 X
10° g/mol, corresponding to polymer radii, R,, of ap-
proximately 6, 25, and 35 nm. The range of the deple-
tion attraction is approximately 2R,, and its magnitude
is estimated with the Asakura-Oosawa model, U,(r) =
—I1, Voverap> Where Voyerap = (R, +a — r/2)*(R, + a +
r/4) and r is the separation between sphere centers [19].
Because the polymer is in a good solvent, its R, depends
on concentration; we measure the size with static light
scattering and determine the osmotic pressure by integrat-
ing the compressibility measured using static light scatter-
ing. The particles also have a weak repulsive interaction
arising from electrostatic charge [23].

Confocal microscopy and image analysis are used to
measure positions of each particle in the gel. Three-
dimensional images of regions 40 X 40 X 30 um are ac-
quired in approximately 5—10 s. Uncertainties in the cen-
troid positions are approximately 0.05 um in the three-
dimensional images [17]. All images are taken at least
20 um from the wall of the sample cell. Particles are
considered to be bonded if their center-center separation
falls below a cutoff value slightly larger than 2(a + R),)
[9]. The results are not sensitive to small variations in the
cutoff length.

Both topological and structural information can be de-
termined from 3D images. A false-color reconstruction of a
typical image of a gel with ¢ = 0.04 is shown in Fig. 1.
For comparison, a two-dimensional image of the same
sample after aging for 690 h is shown in the inset. This
sample had R, = 25 nm, corresponding to R,/a = 0.03,
and the polymer concentration was c§' = 7.2 mg/ml,
where ¢ is calculated using the volume accessible to
the polymer, V(1 — ¢). If the attraction were due solely
to depletion, this would correspond to U = —16kpT.
Gelation took ~50 h and further aging was small; these
data were collected 60 days after the sample was first
initialized by shaking. The radial distribution function

FIG. 1 (color online). Three-dimensional image of a colloidal
gel reconstructed from confocal microscopy. The dark gray
(blue) particles form the shortest chain connecting the two
particles @ and S (enlarged, in stripes). The second-shortest
path is shown in medium gray (red). Inset: Raw image of a slice
through the same gel. The scale bar is 20 um.

g(r) exhibits a power-law decay g(r) ~ r%r~3 as shown in
Fig. 2(a); this provides a direct measure of the fractal
dimension, dy = 2.1 £ 0.1. This value of d; is consistent
with that expected for irreversible reaction-limited cluster-
cluster aggregation, which occurs when there is an energy
barrier in the interaction potential between the particles
that is overcome only rarely [24—29]. The expected corre-
lation length is a¢p~'/3=4) =27 + 10 wm. The images
indicate that the gel is a network of intersecting chains. To
identify individual chains between any two particles, we
determine the contour length L of the shortest path be-
tween the particles along the gel [Fig. 3(a)] [9,10,30]. We
measure the number of particles N in the chain connecting
particles @ and B by counting the number of particles y
that satisfy L&Y + LY < L*B + 1 [9]. This definition se-
lects all particles along the chain, as well as those attached
to the side of the chain; these can strengthen or stiffen the
network, as shown, for example, by the dark gray (blue)
color in Fig. 1. We find that both L and N scale as r%, with

Although the gel is composed of chains of particles, it is
nonetheless an interconnected structure where additional
chains form loops, which can also connect particles. To
ascertain their role in the gel’s elasticity, we identify loops
by searching for the next shortest path between two parti-
cles that does not overlap with the shortest path, except at
the end points. An example is shown by the medium gray
(red) particles in Fig. 1. The fraction of particle pairs for
which a second path could be found, f,, decreases rapidly
with L as shown in Fig. 2(b). In all samples, the second-
shortest paths are either rarely found (f, << 1) or they are
very long (>>L); this suggests that the local elasticity of
the network is dominated by the shortest chain between
any two particles.

The spring constant for each chain is directly measured
from the thermal motion of the particles. We measure the
distribution of separations, r, between two particles in
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FIG. 2. (a) Pair distribution function g vs separation r. The
dotted line corresponds to a fractal dimension, dy = 2.1.
(b) Probability of finding a second path between two particles,
[, as a function of their shortest-path length, L.
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several hundreds to thousands of images, and assume that
its probability distribution is determined by the Boltzmann
factor, P(r) ~ exp{—U(r)/kgT}. When averaged over sev-
eral pairs of particles with similar r, U(r) is well described
by a parabola as shown in Fig. 3(a). The curvature provides
a direct measure of the average elastic constant, x(r), of the
chain connecting two particles with mean separation r. We
also determine the spring constants of individual chains
using the equipartition theorem, which gives «k =
kgT((r*y — {r)?). This method of analysis corresponds to
integrating out the motions of the springs that act in
parallel. Explicit calculations suggest that this approxima-
tion is accurate to within a few percent because the other
springs are much longer and hence weaker than the prin-
cipal chain. In all cases, we account for the uncertainty in
particle position, which can be significant for small r.

Measurements of the spring constant allow us to deter-
mine its scaling with length. We measure the length de-
pendence in terms of N and show a scatter plot of all 3036
measured single-chain values in Fig. 3(b); the large squares
represent the mean values of « for all chains with a given
value of N. Surprisingly, we find x « N~! and hence « =
r~; this differs from the scaling expected for diffusion-
limited cluster aggregation. In the inset, we plot N«x(r) as a
function of 3, explicitly confirming that x(r) is indepen-
dent of ri. We also measure the distribution of spring
constants for each value of r and find this to be independent
of the chain length; thus not only the average value «
exhibits this scaling, but all moments of x do as well.
Furthermore, similar behavior was observed for this sam-
ple when measured after 4, 13, 20, and 29 days; similar
behavior was also observed for a separate sample with
¢ = 8.9 mg/ml. Similar behavior is also found for gels
with still longer-range attraction, formed using polymer
with R, = 33 and 35 nm. Thus, this is a very robust result.
The spring constant has the N~! scaling that is character-
istic of one-dimensional chains that resist stretching but
not bending, as would be expected for a centrosymmetric
potential such as depletion.

We find a striking difference in the r dependence of x(r)
for chains in samples with shorter-ranged interactions. We
measure the structure and elastic constants of a sample
with ¢ = 0.04 and R, = 6 nm, corresponding to R,/a =
0.008 and ¢$" = 22.3 mg/ml. Although this sample is
assumed to be a fractal gel like the others, its topology
differs significantly from that of samples with longer-
ranged potentials: there are significantly fewer loops, as
shown by the f, data in Fig. 2(b). In general, such a
topological difference is not apparent from g(r) and hence
cannot be discerned by scattering. For this sample we find
k(r) ~ (Lr%})~" at distances greater than several times a,
as shown in Fig. 4. Here we explicitly calculate L and r
for each pair and show (Lr3)~! with the solid line; it is in
good agreement with the data. This behavior is consistent
with the expectations for chains that resist bond bending,
which is typically inferred from the elastic behavior of
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FIG. 3. (a) Plot of U(r) measured for pairs of particles with
N = 18 in a sample with long-ranged interaction (R, = 35 nm);
the dotted curve is a fit with elastic constant « = 146 =
6kgT/um?. Inset: Illustration of a chain with L =9 and N =
13. The numbers show the lengths L%? /LAY of the shortest path
between each particle (y) and the particles « and . (b) Scaling
of spring constant, x, with the number of particles in a chain, N,
for a sample with medium-range depletion attraction (R, =
25 nm, ¢ = 0.04). The straight line represents « o« 1/N. Inset:
Log-log plot of kN vs ri. The dashed line shows a slope of —1,
which is expected to apply for rigid chains.

kinetically aggregated colloids [5,6]. While depletion
should be a centrosymmetric potential, the range of the
potential here is so small that it is comparable to the length
of the steric stabilization layer on the particles (=10 nm
[31]). We speculate that the attraction is sufficiently large
to cause overlap of the stabilizing layers or meshing of sur-
face asperities, resulting in a resistance to bond bending.

The spring constant has a different r dependence at both
long and short r. At long length scales, the mean elastic
constant becomes independent of chain length, as shown in
Fig. 4 for r > 20 pm, which is close to the estimate of & =
27 pm. In this regime, the elasticity of the gel is domi-
nated by the highly interconnected network of chains, so «
is nearly independent of length, as expected for an iso-
tropic material [32]. By contrast, at the shortest r, we again
observe k(r) ~ N~!, similar to the longer-ranged poten-
tial; at these length scales, bond-stretching elasticity is
weaker than that of bond bending.

We estimate the spring constant k, for stretching the
bond between two neighboring particles from the interac-
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FIG. 4. Log-scale plot of the mean « vs Euclidean separation, r
(squares), for a sample with short-range depletion attraction
(R, = 6 nm). Also plotted are 1585/(N) and 3162/(Lr7); the

numerical coefficients were chosen to overlay the data with «(r).

tion potential. This potential includes both the depletion
attraction and the electrostatic repulsion. The latter can be
roughly estimated from the gelation time by assuming that
the increase over that expected from purely diffusion-
limited cluster aggregation reflects the contribution of an
electrostatic repulsive barrier [33]. We then predict the
bond-stretching spring constant «, by calculating the
mean-square fluctuation in separation between two par-
ticles; this is similar to the way «(r) is determined in
our experiments. We compare this estimate to the contact
value, K, determined experimentally by extrapolating our
data to r = 2a. For the shortest-range potential, the pre-
dicted «, is 3—4 orders of magnitude greater than that
measured, consistent with bond bending being dominant.
By contrast, for the longer-range potentials the predicted
K, are 1-2 orders of magnitude greater than those mea-
sured [28].

The network formed with the shortest-ranged potential
exhibits behavior consistent with that expected for kineti-
cally aggregated fractal gels; the elasticity is determined by
bond bending and exhibits the predicted scaling at lengths
shorter than the correlation length [11]. By contrast, it is
striking that the gels formed with a longer-ranged potential
remain stable despite the fact that the bonds do not resist
bending. An isolated chain would collapse into a dense,
rigid aggregate. By contrast, in the gel each chain is linked
to other chains at several points, resulting in a relatively
larger number of loops. These links are quite dense; we
observe no isolated chainlike sequences of particles with
only two bonds per particle [9]. Thus the bond-bending
degree of freedom must lead to formation of many loops
during the gelation. These multiple links or loops maintain
the shape of the chains and suppress bond rotation. This
suggests that the network is not in equilibrium and would
shrink if it were not attached to the walls. These results
highlight the unusual structures formed by randomly ag-
gregated colloids.
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