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Extended Quasimodes within Nominally Localized Random Waveguides
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We have measured the spatial and spectral dependence of the microwave field inside an open absorbing
waveguide filled with randomly juxtaposed dielectric slabs in the spectral region in which the average
level spacing exceeds the typical level width. Whenever lines overlap in the spectrum, the field exhibits
multiple peaks within the sample. Only then is substantial energy found beyond the first half of the
sample. When the spectrum throughout the sample is decomposed into a sum of Lorentzian lines plus
a broad background, their central frequencies and widths are found to be essentially independent of posi-
tion. Thus, this decomposition provides the electromagnetic quasimodes underlying the extended field in
nominally localized samples. These quasimodes may exhibit multiple peaks in space when they overlap
spectrally.
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The nature of wave propagation in disordered samples
reflects the spatial extent of the wave within the medium
[1–3]. In part because of the inaccessibility of the interior
of multiply scattering samples, the problem of transport in
the presence of disorder has been treated as a scattering
problem with the transition from extended to localized
waves charted in terms of characteristics of conductance
and transmission. When gain, loss, and dephasing are
absent, the nature of transport can be characterized by
the degree of level overlap, � [2,3], which is the ratio of
average width and spacing of states of an open random
medium, � � ��=��. Here �� may be identified with the
spectral width of the field correlation function [4] and ��
with the inverse of the density of states of the sample.
When � > 1, resonances of the sample overlap spectrally,
the wave spreads throughout the sample, and transport is
diffusive [2]. In contrast, when � < 1, coupling of the wave
in different portions of the sample is impeded. Azbel
showed that, when � < 1, transmission may occur via
resonant coupling to exponentially peaked localized modes
with spectrally isolated Lorentzian lines with transmission
approaching unity when the wave is localized near the
center of the sample [5,6]. Given the sharp divide postu-
lated between extended and localized waves, the nature of
propagation when modes occasionally overlap in samples
for which � < 1 is of particular interest.

Mott argued that interactions between closely clustered
levels in a range of energy in which � < 1 would be
associated with two or more centers of localization within
the sample [7]. Pendry showed that, in this case, occasion-
ally overlapping of electronic modes plays an outsized role
in transport since electrons may then flow through the
sample via regions of high intensity which are strung
together like beads in a necklace [8,9]. Recent pulsed
[10] and spectral [10,11] measurements of optical trans-
mission in layered samples were consistent with the exci-
tation of multiple resonances associated with necklace
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states. In related work, Lifshits had shown that the hybrid-
ization of overlapping defect states outside the allowed
vibrational bands of the pure material led to the formation
of a band of extended states [12]. Similar impurity bands
can be created for electrons in the forbidden gap of semi-
conductors, photons in photonic band gaps, and polaritons
in the polariton gap [13].

The spatial distribution of localized modes has been
observed experimentally in a one-dimensional loaded
acoustic line system in which a single localized mode is
excited and the spectral line is Lorentzian [14] but the
spatial distribution of the field has not been observed for
necklace states when many lines hybridize. The question
then arises as to whether the field distribution in an open
dissipative system may be expressed as a superposition of
decaying quasimodes. If so, the quasimodes underlying the
necklace states could be observed allowing for an explo-
ration of their spatial and spectral characteristics such as a
comparison of the widths of these modes to the sum of the
leakage and dissipation rates, and a consideration of their
completeness and orthogonality [15–19]. Related issues
are relevant to quasimodes of decaying nuclei, atoms and
molecules, electromagnetic waves in microspheres or cha-
otic cavities, and gravity waves produced by matter cap-
tured by black holes [17].

In this Letter, we explore the nature of propagation in an
open dissipative random one-dimensional dielectric me-
dium embedded in a rectangular waveguide. Measure-
ments of the microwave field spectrum made at closely
spaced points along the entire length of the waveguide over
a spectral range in which � < 1 reveal the spatial distribu-
tion of the field. In all samples, we find spectrally isolated
Lorentzian lines associated with exponentially localized
waves. Whenever peaks in the field overlap spectrally, they
also overlap spatially. Only then does the field penetrates
substantially beyond the first half of the sample. When the
field spectra at each point within the sample are decom-
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FIG. 1. Spectra of the field amplitude at each point along a
typical random sample normalized to the amplitude of the
incident field. The arrow points to the input direction.
Inset: Description of the experimental set up and schematic of
the ceramic structure element.
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posed into a sum of Lorentzian lines and a slowly varying
background, the central frequencies and widths of the lines
are found to be independent of position within the sample.

Field spectra are taken along the length of a slotted W-42
microwave waveguide using a vector network analyzer.
The field is weakly coupled to a cable without a protruding
antenna inside a copper enclosure. A 2 mm diameter hole
in the enclosure is pressed against the slot, which is other-
wise covered by copper bars attached to both sides of the
enclosure (inset, Fig. 1). The entire detector assembly is
translated in 1 mm steps by a stepping motor. Measure-
ments are made in 100 random sample realizations each
composed of randomly positioned dielectric elements.
Ceramic blocks are milled to form a binary element of
length a � 7:74� 0:04 mm. The first half of the block is
solid and the second half comprises two projecting thin
walls on either side of the air space, as shown in the inset of
Fig. 1. The orientation of the solid element toward or away
from the front of the waveguide is randomly selected. This
structure introduces states into the band gap of the corre-
sponding periodic structure [20] close to the band edges. In
order to produce states in the middle of the band gap,
ceramic slabs of thickness a=2, corresponding to the solid
half of the binary elements, or Styrofoam slabs, with
refractive index close to unity, are inserted randomly.
The samples are composed of 31 binary elements, 5 single
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ceramic elements, and 5 Styrofoam elements with a total
length of 28.8 cm.

Spectra of the field amplitude at equally spaced points
along a typical random sample configuration normalized to
the amplitude of the incident field amplitude are shown in
Fig. 1. A few isolated exponentially peaked localized
modes with Lorentzian linewidths are seen below
18.7 GHz. Between 18.7 GHz and 19.92 GHz, lines gen-
erally overlap so that � > 1 and the wave is extended. The
field amplitude within the sample over a narrower fre-
quency range in a different random configuration, in which
spectrally overlapping peaks are observed within the band
gap, is shown in two projections in Fig. 2. In order to
exhibit the progression of the phase within the sample, a
top view of the logarithm of the amplitude of the data
plotted in Fig. 2(a) is presented in Fig. 2(b). In the periodic
binary structure, the same projection as in Fig. 2(b) shows
parallel ridges corresponding to maxima of the field am-
plitude separated by a. Thus half the wavelength equals a
throughout the band gap, or � � 2a. When the frequency is
tuned through a Lorentzian line, which corresponds to a
localized state (e.g., � � 15:3 GHz), the phase through the
sample increases by � rad and an additional peak in the
amplitude variation across the sample is introduced. In the
frequency interval between 15.6 and 15.8 GHz where
multiple peaks are observed in the field distribution, the
number of ridges increases by 3. This suggests that the
radiation is tuned through the central frequency of three
successive resonances. This is tested by fitting the field
spectrum to a sum N of Lorentzian lines, as follows,

E��;x� �
XN

n�1

An�x�
�n�x�� i����n�x��

�
X2

m�0

Cm�x�����0�
m;

(1)

where An�x� and Cn�x� are complex coefficients. The
slowly varying polynomial of the second degree centered
at �0 represents the sum of the evanescent wave and the tail
of the response of distant lines. Here, �0 � 15:66 GHz,
which is the center of the frequency interval considered.
We choose N � 5 to include the two ‘‘satellite’’ lines at
15.3 GHz and 16.06 GHz. An iterative double least-squares
fit procedure is applied independently at each position x
within the sample as follows: first guesses for the central
frequencies �n and linewidths �n are used to fit the spec-
trum measured at each position x to Eq. (1) with the
FIG. 2. (a) Spectra of the field ampli-
tude at each point along a random sam-
ple with spectrally overlapping peaks
normalized to the amplitude of the inci-
dent field. (b) The top view of (a) in
logarithmic presentation.
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FIG. 3. Comparison of the measured field magnitude (dots) to
Eq. (1) (full line) at four different locations. The Lorentzian lines
and the polynomial in Eq. (1) are represented by dotted lines.
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FIG. 4. Spatial dependence of central frequency and linewidth
for the five modes shown in Fig. 5. At positions at which the
mode amplitude is greater than the noise, the central frequency
and linewidth are sharply defined.
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amplitude coefficients An�x� and Cn�x� as fitting parame-
ters. These values are used in a second step in which only
the �n�x� and �n�x� are fitting parameters within a bounded
spectral range. This double fitting procedure can be re-
peated to improve the fit. The quality of the fit can be seen
in Fig. 3. Indeed, the �2 normalized by the product of the
integrated spectrum and degrees of freedom (the number of
point minus the number of free parameters) remains below
2� 10�3 over 90% of the sample length. The noise is
higher near the sample output where the signal is generally
close to the noise level. The central frequencies �n�x� and
linewidths �n�x� found in the fit are shown in Fig. 4. A plot
of the complex square of each term in Eq. (1) is shown in
Fig. 5. Fluctuations in �n�x� and �n�x� are large only at
positions for which the peak magnitude of the terms for the
nth mode are low, as can be seen by comparing Figs. 4 and
5. In the domain in which fluctuations in the central fre-
quencies and linewidths for a particular quasimode are low,
these quantities are virtually independent of position and
the field amplitude is given to good accuracy by substitut-
ing the average values of �n�x� � �n and �n�x� � �n in
Eq. (1). The drift is greatest in mode 2, where the variation
in �2�x� is less than 20% of �2.

With �n and �n specified, each of the Lorentzian terms
in Eq. (1) corresponds to a quasimode. For the three
spectrally overlapping modes, ‘‘mode 1’’ (�1 ’
15:56 GHz, �1 ’ 0:67 GHz) is broad as a result of its
closeness to the input. ‘‘Mode 2’’ (�2 ’ 15:70 GHz, �2 ’
0:051 GHz) and ‘‘mode 3’’ (�3 ’ 15:73 GHz, �3 ’
0:07 GHz) are spatially extended and multipeaked in a
spectral range in which quasimodes are generally strongly
localized. In fact, even the two ‘‘satellite modes’’ are not
strictly exponentially localized due to the overlap with
other modes. The sharply defined modes appearing in the
expansion of Eq. (1) in the regions in which the amplitude
of specific modes is greater than the noise in the measured
field and the excellent fit to the spectra shown in Fig. 3 is
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consistent with these modes representing a complete set
even when they overlap.

Because of dissipation within and leakage from the
random sample, the system is not Hermitian, but it re-
mains symmetric since reciprocity is preserved. A non-
Hermitian but symmetric Hamiltonian has complex or-
thogonal eigenvalues when the appropriate inner product
is used [17,21]. The Fourier transform of each term of
Eq. (1) gives the response to an incident pulse in which
the temporal and spatial variations factorize, fn�x; t� �
fn�x� exp �� i�2��n � i�n�t� corresponding to a sum of
exponentially decaying quasimodes. The independent de-
cay of the quasimodes indicates that they are indeed or-
thogonal. If the quasimodes found in the fit and shown in
Fig. 5 were orthogonal, the linewidths of quasimodes
would equal the sum of the absorption rate �a and the
leakage rates for specific modes, �ln, for the nth quasi-
mode. The sample dissipation rate is given by the ratio of
the net flux into the sample, which is the difference be-
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FIG. 5. Field magnitude for five quasimodes and slowly vary-
ing polynomial term in Eq. (1).
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tween the incident flux and the sum of the reflected and
transmitted fluxes, and the steady-state electromagnetic
energy in the sample, which is proportional toR
L
0 ��x�E

2dx. Here ��x� is the effective relative permittivity
determined by matching the measured frequencies of the
modes at the band edge of the periodic structure with the
results of one-dimensional model and including waveguide
dispersion. �ln is determined from the ratio of flux away
from the sample for a given quasimode to the energy in the
sample for this quasimode for steady-state excitation. The
leakage from the sample for a given quasimode is obtained
by decomposing the scattered wave in the empty wave-
guide before and after the random sample into a sum of
Lorentzian lines as given in the first sum on the right hand
side of Eq. (1). The flux is then proportional to the product
of the square of the amplitude of this field component and
the group velocity in the waveguide. Within experimental
uncertainty of 25%, we find that the mode linewidths are
equal to the sum of the absorption and leakage rates. This is
consistent with the conclusion that quasimodes found are
orthogonal.

In conclusion, we have shown that the field inside an
open dissipative random single-mode waveguide can be
decomposed into a complete set of quasimodes, even when
the mode spacing is comparable to the linewidths. Smaller
mode spacings do not occur for spatially overlapping mode
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because of mode repulsion. We find a multipeaked ex-
tended field distribution whenever quasimodes overlap,
and a single-peaked field distribution in the rare cases of
spectrally isolated modes. Because absorption suppresses
long-lived single-peaked states more strongly than short-
lived multipeaked states, wave penetration into the second
half of the sample and transmission through the sample are
substantial only when a number of closely spaced quasi-
modes are excited. Though waves may extend through the
sample when quasimodes overlap in a spectral range in
which � < 1, their envelope still falls exponentially near
each peak representing a center of localization and the
nature of transport may still be differentiated from diffu-
sive regions for which � > 1. The demonstration that
quasimodes are well defined when the spacing between
their central frequencies is comparable to their linewidth
suggests that a quasimode description may also be appro-
priate for diffusing waves in samples with � > 1.
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