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We demonstrate the simultaneous occurrence of coherent population trapping at a series of frequencies
separated by modulation frequency of phase-modulated fields. The two arms of the A system are coupled
to two phase-modulated fields and the response of the atomic system to such fields is calculated nonper-
turbatively. A judicious choice of modulation characteristics allows one to selectively switch on or off the
occurrence of coherent population trapping at specific frequencies. A new technique is developed to com-
pute two-dimensional tridiagonal matrix equations. This generalized technique provides the vital method-
ology needed to calculate the response of such systems in the strong modulation regime and for arbitrary

field strengths.
DOI: 10.1103/PhysRevLett.96.183601

One of the most significant and macroscopic demonstra-
tions of atomic coherence is the disappearance of fluores-
cence due to coherent population trapping (CPT), also
known as dark resonance. The CPT state has been used
in a variety of applications like atomic cooling [1], electro-
magnetically induced transparency (EIT) [2], lasing with-
out inversion [3], and adiabatic population transfer [4].
Such coherent atomic interference phenomenon is usu-
ally associated with excitation by a monochromatic field
with well-controlled phase stability. In this Letter, we
demonstrate that even on excitation with multicolored
phase-modulated (PM) fields, CPT occurs at a series of
frequencies.

Multicolored CPT provides a promising avenue to-
wards a variety of applications. For example, in atomic
cooling substantial improvement is envisaged, wherein it
allows for addressing atoms over a large velocity range
and capturing them into lower momentum states at a series
of velocity selective CPT states. These states would result
in significantly reduced spontaneous emission reheating
and could lead to the capture of considerably larger frac-
tion of atoms. In the context of quantum informa-
tion science, EIT based on multicolored CPT provides a
platform for multipartite entanglement across many dis-
tinct frequencies which can be addressed individually.
The multicolored atomic coherence can be utilized to
generate giant refractive index accompanied with negli-
gible absorption at a series of frequencies and could lead to
novel pulse dynamics and pulse shape engineering. Many
more such effects, which are an interplay of reduced
absorption and enhanced atomic coherence at a series of
distinct frequencies opens up a platform for multicolored
coherent control. The limitation is the trade off between the
number of frequencies where CPT occurs and the magni-
tude of atomic coherence occurring at these frequencies.

Modulated fields are widely used and provide powerful
spectroscopic tool. In particular, phase modulation spec-
troscopy has become a routine technique, wherein the
spectral content of a PM probe field is used to extract
resonances at the modulation frequency. The strength of
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the technique lies in its ability to simultaneously address
resonances at disparate frequencies with precise control of
the modulation characteristics [5]. In this Letter, the comb
of frequencies of two PM fields are matched across atomic
transitions leading to CPT phenomenon. Furthermore, se-
lective tailoring of spectral content of the comb of frequen-
cies allows one to control occurrence of CPT at specific
frequencies. In a related context, extremely narrow optical
resonances have been observed with unprecedented reso-
lution using the femtosecond-laser frequency combs [6],
although the motivation there is quite different.

The PM field coupled to atomic system has been dealt
with; in particular, the two-level atomic system driven by a
PM field has been studied nonperturbatively [7], and later
has been shown to exhibit population trapping [8]. This
trapping is distinctly different from the CPT exhibited in
three-level A systems. In the three-level atomic system
suppression of a series of Autler-Townes resonances is
shown to occur when driven by a strong PM field and
probed by a weak monochromatic field [9]. In a three-level
ladder system the PM drive also offers control over popu-
lation transfer and trapping [10]. We have earlier shown
the possibility of lasing without inversion [11] in a three-
level V system driven by a single PM field. To our knowl-
edge there has been no study involving two arbitrary PM
fields coupling strongly to a three-level atom. It should be
noted that this regime involving a large index of modula-
tion coupled with strong fields has not been explored
sufficiently due to obvious experimental and theoretical
difficulties. In this Letter we briefly outline the methodol-
ogy we have developed to calculate nonperturbatively the
above response, the details of which will be published
elsewhere.

A three-level atom in the A configuration is coupled to
two distinct PM fields

E‘ = E-)‘le*l'[wlﬁ(l)](l)] + E_)‘ze*i[wzﬁ‘l’z(f)]’

(D

CI)I([) = Ml Sin(Qlt), (I)z(t) = M2 Sil’l(ta),

where E 1,2 are the amplitudes of the fields coupling the two
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arms of the A system and other parameters are as shown in
Fig. 1.
The total Hamiltonian of the system is

H = ho | 11| + hoy|2)2| —d - E, )

where the dipole moment operator d = dy;|1)(3|+
dp,|1)2] + c.c. The first two terms in the Hamiltonian
correspond to the unperturbed atomic system where the
energies are measured from the ground state |3), and the
last term is the interaction term in the dipole approxima-
tion. The semiclassical density matrix equation governing
the atom-field dynamics is

dp i
7 h[H’ pl+ Lp, 3)
where, the Liouvillian operator £ contains all the incoher-
ent processes, such as spontaneous emission from the level
[1) to |2) (I3)) with rate 27, (27,), and the relaxation of the
ground state coherence I' between the lower states |2) and
|3) [12]. We transform the equation of motion (3) into a
frame rotating with the instantaneous frequency of the field
and undertake the rotating-wave approximation. This in-
volves neglecting the counterrotating terms at nearly twice
the optical frequency in comparison to slowly varying terms
at difference frequencies for near resonant excitation. This
approximation is quite valid at optical frequencies and also
for the modulated field because |dP;,(1)/dt| < w,, for
typical phase modulation in the optical regime.

Because of the coupling of the atom to the PM fields, the
slowly varying density matrix equations involve time-
dependent detuning factors which go as d®,(r)/dt. We
use the two-dimensional Fourier decomposition

pij = Z pg’vq)e—i(pﬂlt+qﬂzt)’ (4)
P,g=—®

which involves integral harmonics of the modulation fre-
quencies (), , and there are a set of nine equations for p,;,
where i, j label the atomic levels 1, 2, and 3. By equating

various powers of (), ,, we obtain an infinite set of coupled

(.q)

first order differential equations for p;;""’, where p and ¢
|

AT = =2(y1 + y2) +i(pQy + qLy),
ARt = —(y + y2 +idy) + i(pQy + qQy),
AS = i(pQ, + ),
AL = —=(y1 + y2 — i) + i(pQy + gLy,

12)

13)

FIG. 1. Three-level A system driven by PM optical fields at the
central frequency w; (w,) and modulation frequency Q; ({2,)
couple the transition |1) « (2| (|1) < (3|), where p (gq) take
positive and negative integer values corresponding to the various
harmonics of the PM fields.

are integers that independently vary from —oo to oo and
denote the various harmonics. Furthermore, we also note
that the set of equations for (p, ¢) are coupled to the set for
(p £ 1, q £ 1), because phase modulations @ ,(7) are cir-
cular functions. The closure of the above system requires
that pP? + plb? + pP4) = 2,0040- This population
conservation condition is used to eliminate one of the
nine equations in each set of (p, ¢) equations, giving rise
to following two-dimensional tridiagonal equation

diqrw = APIWra + BWr—la + Cgrly
t
+DWwram! + EWPatl + R?S,08,0, (5)

where, W74 is an 8 X 1 column vector with elements pgj’ 9
in the given order W9 =[p, p1, P13, P21, P22, P23,
pa1, P!, and A..E represent 8 X 8 matrices with
time-independent coefficients. R is also an 8 X 1 column
vector with constant entries. The R? term arises due to
population conservation in the closed three-level system
considered here. The nonzero elements of the matrices in

Eq. (5) are given below:

AL = —(y, + yy + iA) + i(pQ, + qQy),

AV = —(y; + vy —iA) +i(pQ; + qQy),

ALd = —[T = i(A; — Ay)] + i(pQ, + gQy),

AL = —[T + (A, — A)] + i(pQ, + q€y),

(6)
PA* _ AP — AP — APG — APG — _APGE _ APGE AP APG . APGE _ ADGE _ AP _
Ay =AY =AY = A = A = A = A = Ay = —As = —Agy = A = —Ag =Gy,
DA% _ AP APG — _APA — APGE — _ AP — _ APGE _ _ APGE _ ; P APGE _
Ay =AY = Ay = —Ag Ay Ag) A% Agy iGy, Az A7) i2G,,

A5 =27,

322 = _B44 = _BG6 = ng = C22 = _C44 = _C66 = CSS = iMIQI/z’
D33 = Dgs = —D77 = —Dgg = Es3 = Egs = —E7; = —Egg = iM,(),/2,

Rg = R(7)* = lG2 X 5‘0’05%0.

In order to obtain the steady-state solutions, we set the time derivatives to zero and recast the above equation to obtain
tridiagonal matrix recurrence relation in p of the following form:
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D A K wra |+ 0 B O || Wttt [+ 0 C 0 || Wwrla R | =0, (7
0 D Ardtl || wrat! 0 0 B || wrilet! 0 0 C || wrtat! 0

where, if p varies from —N to N, and g from —M to M,
then the size of square matrices in Eq. (7) would be
(8[2M + 1]) X (8[2M + 1]) and the size of the vectors
would be (8[2M + 1]) X 1. In order to obtain W, the
matrix continued fraction technique is used to solve this
two-dimensional tridiagonal relations in p and ¢g. The
matrix continued fraction technique is as described in
Refs. [7,13], however, the usual technique involves tridiag-
onal relations involving just one index, say p. Here, we
need to accommodate two-dimensional tridiagonal rela-
tions, and recasting Eq. (5) in the form of Eq. (7) results
in tridiagonal relations involving only one index p.
Although, the matrices in Eq. (7) are much larger because
each matrix itself spans over all possible values of ¢, yet, it
continues to involve the tridiagonal matrix relation involv-
ing p and p = 1. This system of equations can be solved to
the desired accuracy by taking sufficient number of terms,
in the matrix size, as well as in the continued fraction. The
limits N and M depend on the choice of G; and M;, and as
is well known, J,(M;) is a decreasing function of n when
n > M;; one needs to take at least as many terms. Needless
to say, we have checked the numerical convergence of the
results by increasing the limits N and M, which results in
more terms in the continued fraction and larger matrices,
respectively.

In this Letter, we present exact nonperturbative numeri-
cal computation because, the Rabi frequency of the fields,

[
the values of the modulation frequency (), ,, and the index
of modulation M, ; are large. One observes CPT occurring
simultaneously at a series of frequencies, when ; = ),
for A} = A, * kQ), see Fig. 2. Here the two-photon reso-
nant Raman condition is satisfied not just for the central
frequencies but also for each sideband of the PM fields.
Moreover, choosing G; = G, and M; = M, ensures that
the strength of each pair of fields involved in the Raman
transition given by G,;J.(M;) is the same. The CPT effect
can be dominant whenever the comb of frequencies on one
arm of the A system matches with the comb of frequencies
on the other arm, albeit with different weights. For differ-
ent values of the detuning A,, the comb of frequencies
w, + k€, keeps shifting and wherever the two-photon
Raman condition is satisfied, which occurs simultaneously
for a series of frequencies in the comb, the CPT effect is
significant. We show the excited state population p( 0 and
the extent of coherence between the ground states
Re{p(0 9 in Fig. 2. All the frequency units throughout
this Letter are scaled in the units of y;. The dips in the
excited state population due to CPT are accompanied by
increased atomic coherence at a series of equidistant fre-
quencies. One can obtain significantly larger values for the
atomic coherence by decreasing the index of modulation,
which in turn limits the number of sidebands of the PM
field and thus the occurrence of CPT to those few side-
bands. It appears as though the maximum atomic coher-
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FIG. 2. Multicolored CPT occurs at a series of frequencies separated by integer multiples of the modulation frequency. The upper

curve is the excited state population p( 0

chosen to be the same along the two arms of the A system, (),
0.01vy,, and the detuning A; = 0.

and the lower curve is the measure of atomic coherence Re{p(0 0)} The parameters are

=Q, =10y, M, =M, =140,G, =G, =3y, v, =7, [ =
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FIG. 3. The CPT feature is selectively switched off by careful
choice of the modulation characteristics, (a) the CPT at A, =
*10vy, are suppressed with M| =M,=94 and Q;=Q,=
10y,; (b) the CPT features at A, =0 and *207y, are sup-
pressed with M, =9.4, M,=8.6537, ), =20y,, and Q,=
10y;. The other parameters common to (a) and (b) are G; =
G2:3'}/1, Al :0, and I'=0.

ence obtained in the usual CPT case (with monochromatic
fields) is shared across a comb of frequencies in the multi-
colored case [14]. Furthermore, the Bessel function
[J+(M)] for the coupling strength provides significant con-
trol over the response, for example, a choice of M such that
Ji(M) = 0 eliminates the w * k) sideband. Such control
can be used to selectively shut off CPT at particular fre-
quencies, as is shown in Fig. 3.

We further illustrate the issue of control of CPT at
specific frequencies. We choose M| = M, = 9.4 this elimi-
nates the CPT w; = ) frequency, as seen in Fig. 3(a).
Even though the choice of M; does not eliminate any
specific frequencies of the comb, the nonlinear coupling
is such that the CPT effect is eliminated at some specific
frequencies. It is worthwhile to note that the coupling
being highly nonlinear, a simplistic matching of comb of
frequencies need not always result in CPT. Although a
judicious choice of modulation parameters does provide
sufficient control over CPT. We choose M, = 8.6537 such
that Jo(M,) = O this eliminates the central w, frequency
and also choose the modulation frequencies such that
Q, = 20y, and Q, = 107,. As the detuning A, is varied,
one observes that the CPT has disappeared for the zero
detuning case. By eliminating the central frequency of one
of the fields, and ensuring that no matching of frequencies
occurs even at the neighboring frequencies, complete
elimination of CPT at the line center is obtained, see
Fig. 3(b). On similar grounds the CPT feature at A, =
+20y; is nearly nonexistent.

We would like to emphasize that the contribution of all
the neighboring frequencies is as important as the central
frequency itself. It is also noted that the CPT dip seems
sharper in the multicolored field case than the monochro-
matic one. This is because the power broadening effects are
less prevalent here as the same field strength G; is being
shared by series of frequencies with weights J,(M;).

In conclusion, we have shown the simultaneous occur-
rence of CPT at a series of frequencies when driven by PM
fields along the two arms of the A system. This would
facilitate the realization of a variety of a coherent optical
phenomenon [15] simultaneously at a series of frequencies.
A proper choice of parameters can coherently switch on or
off the CPT structure selectively. We have developed a
generalization of the matrix continued fraction technique
to deal with two-dimensional tridiagonal relations. This
technique being nonperturbative and exact provides a use-
ful tool to model a family of strongly coupled systems.
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