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A holographic derivation of the entanglement entropy in quantum (conformal) field theories is proposed
from anti–de Sitter/conformal field theory (AdS/CFT) correspondence. We argue that the entanglement
entropy in d� 1 dimensional conformal field theories can be obtained from the area of d dimensional
minimal surfaces in AdSd�2, analogous to the Bekenstein-Hawking formula for black hole entropy. We
show that our proposal agrees perfectly with the entanglement entropy in 2D CFT when applied to AdS3.
We also compare the entropy computed in AdS5�S5 with that of the free N �4 super Yang-Mills theory.
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One of the most remarkable successes in gravitational
aspects of string theory is the microscopic derivation of the
Bekenstein-Hawking entropy SBH,

SBH �
area of horizon

4GN
; (1)

for Bogomolnyi-Prasad-Sommerfield black holes [1]. This
idea relates the gravitational entropy with the degeneracy
of quantum field theory as its microscopic description.
Taking the horizon limit, we can regard this as a special
example of anti–de Sitter/conformal field theory (AdS/
CFT) correspondence [2–4]. It claims that the d� 1 di-
mensional conformal field theories (CFTd�1) are equiva-
lent to the (super)gravity on d� 2 dimensional anti–
de Sitter space AdSd�2. We expect that each CFT is sitting
at the boundary of AdS space.

On the other hand, there is a different kind of entropy
called entanglement entropy (von Neumann entropy) in
quantum mechanical systems. The entanglement entropy,
SA � �trA�A log�A, �A � trBj�ih�j, provides us with a
convenient way to measure how closely entangled (or how
‘‘quantum’’) a given wave function j�i is. Here, the total
system is divided into two subsystems A and B, and �A is
the reduced density matrix for the subsystem A obtained by
taking a partial trace over the subsystem B of the total
density matrix � � j�ih�j. Intuitively, we can think of SA
as the entropy for an observer who is accessible only to the
subsystem A and cannot receive any signals from B. In this
sense, the subsystem B is analogous to the inside of a black
hole horizon for an observer sitting in A, i.e., outside of the
horizon. Indeed, an original motivation of entanglement
entropy was its similarity to the Bekenstein-Hawking en-
tropy [5,6].

The entanglement entropy is of growing importance in
many fields of physics in our exploration for a better
understanding of quantum systems. For example, in a
modern trend of condensed matter physics it has been
becoming clear that quantum phases of matter need to be
characterized by their pattern of entanglement encoded in
many-body wave functions of ground states, rather than
06=96(18)=181602(4) 18160
conventional order parameters [7–9]. Recently, the entan-
glement entropy has been extensively studied in low-
dimensional quantum many-body systems as a new tool
to investigate the nature of quantum criticality (refer to
[10] and references therein, for example).

For 1D quantum many-body systems at criticality (i.e.,
2D CFT), it is known that the entanglement entropy is
given by [10,11]

SA �
c
3

log
�
L
�a

sin
�
�l
L

��
; (2)

where l and L are the length of subsystem A and total
system A [ B (both ends of A [ B are periodically identi-
fied), respectively; a is a ultraviolet (UV) cutoff (lattice
spacing); c is the central charge of the CFT. When we are
away from criticality, Eq. (2) is replaced by [7,10]

SA �
c
6
A log

�
a
; (3)

where � is the correlation length and A is the number of
boundary points of A [e.g., A � 2 in the setup of (2)].

In spite of these recent developments, and its similarity
to the black hole entropy, a comprehensive gravitational
interpretation of the entanglement entropy has been lack-
ing so far. Here, we present a simple proposal on this issue
in the light of AdS/CFT duality. Earlier discussions from
different viewpoints can be found in, e.g., papers [12,13].
Define the entanglement entropy SA in a CFT on R1;d (or
R� Sd) for a subsystem A that has an arbitrary d� 1
dimensional boundary @A 2 Rd (or Sd). In this setup we
propose the following ‘‘area law’’:

SA �
area of �A

4G�d�2�
N

; (4)

where �A is the d dimensional static minimal surface in
AdSd�2 whose boundary is given by @A, and G�d�2�

N is the
d� 2 dimensional Newton constant. Intuitively, this sug-
gests that the minimal surface �A plays the role of a holo-
graphic screen for an observer who is accessible only to the
subsystem A. We show explicitly the relation (4) in the
2-1 © 2006 The American Physical Society
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lowest dimensional case d � 1, where �A is given by a
geodesic line in AdS3. We also compute SA from the
gravity side for general d and compare it with field theory
results, which is successful at least qualitatively. From (4),
the basic properties of the entanglement entropy, (i) SA �
SB (B is the complement of A) and (ii) SA1

� SA2
� SA1[A2

(subadditivity), are obvious.
We can also define the entanglement entropy at finite

temperature T � ��1. For example, in a 2D CFT on a
infinitely long line, it is given by replacing L in Eq. (2)
with i� [10]. We argue that Eq. (4) still holds in T > 0
cases. Note that SA � SB is no longer true if T > 0 since �
is in a mixed state generically. At high temperature, we will
see that this occurs due to the presence of black hole
horizon in the dual gravity description.

Let us start with the entanglement entropy in 2D CFTs.
According to AdS/CFT correspondence, gravitational
theories on AdS3 space of radius R are dual to �1� 1�D
CFTs with the central charge [14]

c �
3R

2G�3�N
: (5)

The metric of AdS3 in the global coordinate (t; �; �) is

ds2 � R2�� cosh�2dt2 � d�2 � sinh�2d�2�: (6)

At the boundary � � 1 of AdS3 the metric is divergent. To
regulate physical quantities we put a cutoff �0 and restrict
the space to the bounded region � � �0. This procedure
corresponds to the UV cutoff in the dual CFTs [15]. If L is
the total length of the system with both ends identified, and
a is the lattice spacing (or UV cutoff) in the CFTs, we have
the relation (up to a numerical factor)

e�0 	 L=a: (7)

The �1� 1�D spacetime for the CFT2 is identified with
the cylinder (t; �) at the boundary � � �0. The
subsystem A is the region 0 � � � 2�l=L. Then �A in
Eq. (4) is identified with the static geodesic that connects
the boundary points � � 0 and 2�l=L with t fixed, travel-
ing inside AdS3 [Fig. 1(a)]. With the cutoff �0 introduced

above, the geodesic distance L�A is given by cosh�
L�A
R � �

1� 2sinh2�0sin2 �l
L .
(a) (b)

FIG. 1 (color online). (a) AdS3 space and CFT2 living on its
boundary, and (b) a geodesics �A as a holographic screen.
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Assuming the large UV cutoff e�0 
 1, the entropy (4)
is expressed as follows, using Eq. (5):

SA ’
R

4G�3�N
log

�
e2�0 sin2 �l

L

�
�
c
3

log
�
e�0 sin

�l
L

�
: (8)

This entropy precisely coincides with the known CFT
result (2) after we remember the relation Eq. (7).

This proposed relation (4) suggests that the geodesic (or
minimal surface in the higher dimensional case) �A is
analogous to an event horizon as if B were a black hole,
though the division into A and B is actually artificial. In
other words, the observer, who is not accessible to B, will
probe �A as a holographic screen [16], instead of B itself
[Fig. 1(b)]. The minimal surface provides the severest
entropy bound when we fix its boundary condition. In
our case it saturates the bound.

More generally, we can consider a subsystem A which
consists of multiple disjoint intervals as follows:

A � fxjx 2 �r1; s1� [ �r2; s2� [    [ �rN; sN�g; (9)

where 0 � r1 < s1 < r2 < s2 <   < rN < sN � L. In
the dual AdS3 description, the region (9) corresponds to
� 2 [Ni�1�

2�ri
L ; 2�si

L � at the boundary. In this case it is not
straightforward to determine minimal (geodesic) lines re-
sponsible for the entropy. However, we can find the answer
from the entanglement entropy computed in the CFT side.
The general prescription of calculating the entropy for such
systems is given in [10] using conformal mapping. For our
system (9), we find, when rewritten in the AdS3 language,
the following expression of SA:

SA �

P
i;j Lrj;si �

P
i<j Lrj;ri �

P
i<j Lsj;si

4G�3�N
; (10)

where La;b is the geodesic distance between two boundary
points a and b. We can think that the correct definition of
minimal surface is given by the numerator in Eq. (10).

Next we turn to the entanglement entropy at finite tem-
perature. We assume the spacial length of the total system
L is infinitely long such that �=L� 1. At high tempera-
ture, the gravity dual of the CFT is the Euclidean Banados-
Teitelboim-Zanelli (BTZ) black hole [17] with the metric
given by

ds2 � �r2 � r2
��d�

2 �
R2

r2 � r2
�

dr2 � r2d’2: (11)

The Euclidean time is compactified as �	 �� 2�R
r�

to
obtain a smooth geometry in addition to the periodicity
’	 ’� 2�. Looking at its boundary, we find the relation
�
L �

R
r�
� 1 between the CFT and the BTZ black hole.

The subsystem A is defined by 0 � ’ � 2�l=L at the
boundary. Then we expect that the entropy can be com-
puted from the geodesic distance between the boundary
points ’ � 0; 2�l=L at a fixed time. To find the geodesic
line, it is useful to remember the familiar fact that the
Euclidean BTZ black hole at temperature TBTZ is equiva-
2-2
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lent to the thermal AdS3 at temperature 1=TBTZ. This
equivalence can be interpreted as a modular transforma-
tion in the CFT side [18]. If we define the new coordinates
r � r� cosh�, r�� � R�, and r�’ � Rt, then the metric
(11) indeed becomes the Euclidean version of AdS3 metric
(6). Thus the geodesic distance can be found in the same
way as the zero-temperature case, cosh�L�A=R��1�
2cosh2�0sinh2��l� �, where the UV cutoff is interpreted as
e�0 	 �=a. Then the area law (4) again reproduces the
known CFT result [10] SA��� �

c
3 log� ��a sinh��l=���. In

the multi-interval cases we find the same formula (10).
It is instructive to repeat the same analysis in the

Poincaré metric ds2 � R2z�2�dz2 � dx2
0 � dr

2�. We de-
fine the subsystem A by the region �l=2 � r � l=2 at
the boundary z � 0. The geodesic line �A is given by

�r; z� �
l
2
�coss; sins�; �� � s � �� ��; (12)

where the infinitesimal � is the UV cutoff �	 2a=l (or
equally zUV 	 a). We obtain the entropy SA as follows:

SA �
L�A
4G�3�N
� R

2G�3�N

R
�=2
�

ds
sins �

c
3 log la . This reproduces the

small l limit of Eq. (2) [11].
When we perturb a CFT by a relevant perturbation, the

renormalization group flow generically drives the theory to
a trivial IR fixed point. We denote the correlation length �
in the latter theory. In the AdS dual, this massive deforma-
tion corresponds to capping off the IR region, restricting
the allowed values of z to z � �. In the large l limit, we find
SA �

1
4G�3�N

R
2�=l
�

ds
sins �

c
6 log�a . This agrees with the CFT

result with A � 1 (3) [7,10].
Motivated by the success in our gravitational derivation

of the entanglement entropy for d � 1, it is interesting to
extend the idea to higher dimensional cases (d � 2). A
natural thing to do is to replace geodesic lines with mini-
mal surfaces. The computations are analogous to the evalu-
ation of Wilson loops [19], though the dimension of
relevant minimal surfaces is different.

We will work in the Poincaré metric for AdSd�2,

ds2 � R2z�2

�
dz2 � dx2

0 �
Xd
i�1

dx2
i

�
: (13)

We consider two examples for the shape of A. The first one
is a straight belt AS � fxijx1 2 ��l=2; l=2�; x2;3;...;d 2
��1;1�g at the boundary z � 0 [Fig. 2(a)]. In this case
(a) (b)

FIG. 2 (color online). Minimal surfaces in AdSd�2: (a) AS and
(b) AD.
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the minimal surface is defined by dz=dx1�
������������������
z2d
� �z2d

p
=zd,

where z� is determined by l=2�
Rz�

0 dzz
d�z2d
� �z

2d��1=2�

z�
����
�
p

��d�1
2d �=�� 1

2d�. The area of this minimal surface is

area AS �
2Rd

d� 1

�
L
a

�
d�1
�

2d�d=2Rd

d� 1

�
��d�1

2d �

�� 1
2d�

�
d
�
L
l

�
d�1

;

(14)

where L is the length of AS in the x2;3;...;d direction.
The second example is the disk AD defined by AD �

fxijr � lg [Fig. 2(b)] in the polar coordinate
P
idx

2
i �

dr2 � r2d�2
d�1. The minimal surface is a d dimensional

ball Bd defined by (12). Its area is

area AD � C
Z 1

a=l
dy
�1� y2��d�2�=2

yd

� p1�l=a�
d�1 � p3�l=a�

d�3

�

(
pd�1�l=a� � pd �O�a=l�; d: even;

pd�2�l=a�
2 � q log�l=a� �O�1�; d: odd;

(15)

where C � 2�d=2Rd=��d=2� and p1=C � �d� 1��1, etc.
For d even, pd=C � �2

����
�
p
��1��d2���

1�d
2 � and for d odd,

q=C � ����d�1�=2�d� 2�!!=�d� 1�!!.
From these results, the entanglement entropy can be

calculated by Eq. (4). Each of (14) and (15) has a UV
divergent term 	a�d�1 that is proportional to the area of
the boundary @A. This agrees with the known area law of
the entanglement entropy in quantum field theories [5,6].
Note that this area law is related to our Eq. (4) via the basic
property of holography.

We may prefer a physical quantity that is independent of
the cutoff (i.e., universal). The second term in Eq. (14) has
this property. In general, when A is a finite size, there is a
universal and conformal invariant constant contribution to
SA if d is even (see [20] for properties of minimal surfaces
in AdS). In �2� 1�D topological field theories the constant
contribution to SA encodes the quantum dimension and is
called the topological entanglement entropy [8,9]. If d is
odd, the coefficient of the logarithmic term 	 log�l=a� is
universal as in Eq. (2).

Let us apply the previous results to a specific string
theory setup. Type IIB string on AdS5 � S5 is dual to
4D N � 4 SU�N� super Yang-Mills theory [2]. The radii
of AdS5 and S5 are given by the same value R �
�4�gs	02N�1=4. The 5D Newton constant is related to the
10D one via G�10�

N � �3R5G�5�N . Then we obtain from
Eqs. (14) and (15)

SAS �
N2L2

2�a2 � 2
����
�
p

�
��23�

��16�

�
3 N2L2

l2
; (16)

SAD � N2

�
l2

a2 � log
�
l
a

�
�O�1�

�
: (17)
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FIG. 3 (color online). (a) Minimal surfaces �A for various
sizes of A. (b) �A and �B wrap the different parts of the horizon.
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It is interesting to compare the finite universal term in
Eq. (16) with the field theory one. For free real scalars and
fermions in general dimensions, one way to compute SAS is
presented in [21] (see also [22]). Indeed, this leads to the
same behavior in a and l as in Eq. (16). Following this
approach, we can estimate finite contributions from 6 sca-
lars and 4 Majorana fermions in the N � 4 Yang-Mills
multiplet. In the end, we obtain SfreeCFT

finite 	��0:068�
g�N2L2=l2, where g is the contribution from the gauge
field (g � 0:010 if we treat the gauge field as 2 scalars). On
the other hand, our AdS5 result (16) leads to SAdS

finite 	
�0:051N2L2=l2. We may think this is a good agreement
if we remember that the gravity description corresponds to
the strongly coupled gauge theory instead of the free theory
as in [23].

As the final example, we discuss the N � 4 super
Yang-Mills theory on R3 at a finite temperature T, which
is dual to the AdS black hole defined by the metric [24]
ds2 � R2�du

2

hu2 � u2��hdt2 � dx2
1 � dx2

2 � dx2
3� � d�2

5�,
where h � 1� u4

0=u
4, u0 � �T. For the straight belt AS,

the area is given by (putting the cut off u	 z�1 	 a)
areaAS � 2R3L2

R
a�1

u�
duu6�������������������������

�u4�u4
0��u

6�u6
��

p , where u� satisfies

l=2 �
R
1
u�
du��u4 � u4

0��u
6=u6

� � 1���1=2. This contains
the UV divergence 	a�2 as before. As in the analogous
computation of Wilson loops [25], we also expect a term
which is proportional to the area of A. Indeed, when l is
large (u� 	 u0) we find the constant term 	�3R3L2lT3.
This leads to the finite part of SA

Sfinite ’
�2

2
N2T3L2l �

�2N2T3

2
� �area of AS�: (18)

We can regard this entropy as a part of the Bekenstein-
Hawking entropy of black 3-branes [23], which is propor-
tional to the area of horizon situated at u � u0. Thus
we can interpret the part (18) as a thermal entropy contri-
bution to the total entanglement entropy at finite tempera-
ture. In our gravitational description, this part arises
because the minimal surface wraps a part of the black
hole horizon [Fig. 3(a)]. If we expand the size of A until
it coincides with the total system (in the global coordinate),
�A wraps the horizon completely and SA becomes equal to
the Bekenstein-Hawking entropy as expected. In a sense,
the overall normalization in Eq. (4) is fixed from Eq. (1)
once we consider the entanglement entropy at finite tem-
18160
perature. Note that at finite temperature SA � SB does not
hold generically, as is clear from Fig. 3(b).

As argued in [13,26], the AdS black hole can be dual to
an entanglement of two different CFTs at the two bounda-
ries. As a specific limit, we may think the black hole
entropy is the same as the entanglement entropy of the
CFTs as the minimal surface wrap the horizon.
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