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Rayleigh-Plateau and Gregory-Laflamme Instabilities of Black Strings
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Many and very general arguments indicate that the event horizon behaves as a stretched membrane. We
explore this analogy by associating the Gregory-Laflamme instability of black strings with a classical
membrane instability known as the Rayleigh-Plateau instability. We show that the key features of the
black string instability can be reproduced using this viewpoint. In particular, we get good agreement for
the threshold mode in all dimensions and exact agreement for large spacetime dimensionality. The
instability time scale is also well described within this model, as well as the dimensionality dependence. It
also predicts that general nonaxisymmetric perturbations are stable. We further argue that the instability of
ultraspinning black holes follows from this model.
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The existence of black holes is perhaps the most dra-
matic prediction of Einstein’s theory, the very concept of
which makes full use of the nonlinearity of the equations
and also of our notion of space and time. Despite being
apparently very complex objects, black holes can be asso-
ciated with many of the familiar quantities of everyday
physics. The first major breakthrough in this direction was
hinted at by Bekenstein [1], who conjectured that black
holes are endowed with thermodynamic properties,
namely, with an entropy proportional to its area. That black
holes are thermodynamics entities was established once
and for all by Hawking [2], who verified explicitly that
black holes radiate, and therefore have an associated tem-
perature. This analogy carries over to higher-dimensional
scenarios, which seem to be a prerequisite for consistency
in many modern theories. In the general higher-
dimensional gravity theories, there are other objects called
black branes [3], with event horizons. These are basically
extended black holes: the horizon, instead of having the
topology of a sphere, can have, for instance, the topology
of sphere times a line—a cylinder. The analogy with
thermodynamics can still be formulated, and in fact one
can even go further and formulate an analogy with hydro-
dynamics [4]. The thermodynamic description, both for
black holes and black branes, is based on the four laws
of black hole dynamics formulated by Bardeen, Carter, and
Hawking [5]. The first law (we will take for simplicity
uncharged, static objects) describes how a black hole,
characterized by its mass M, horizon area A, and T �
1=�32�M�, evolves when we throw an infinitesimal
amount of matter into it:

dM � TdA: (1)

The second law states that in any classical process the
horizon area must increase, dA � 0. It is very tempting
06=96(18)=181601(4) 18160
to associate these two laws with the first and second laws of
thermodynamics, respectively, in which case T would be
proportional to a temperature and A to an entropy (the other
two laws of black hole mechanics also have a correspon-
dence with the zero and fourth thermodynamic laws). The
final ingredient to proceed consistently with this associa-
tion was given by Hawking [2], who realized that black
holes are indeed radiating objects and that one can indeed
associate them with a temperature TH � 4T.

We can also argue that Eq. (1) can be looked at as a law
for fluids, with T being an effective surface tension [6].
Regarding the event horizon as a kind of fluid membrane is
a position adopted in the past [7]. The first works in black
hole mechanics actually considered T as a surface tension
(see the work by Smarr [8] and references therein), which
is rather intuitive: in fluids the potential energy, associated
with the storage of energy at the surface, is indeed pro-
portional to the area. Later, Thorne and co-workers [7]
developed the ‘‘membrane paradigm’’ for black holes,
envisioning the event horizon as a kind of membrane
with well-defined mechanical, electrical, and magnetic
properties. Not only is this a simple picture of a black
hole, it is also useful for calculations and understanding
what black holes are really like. There are other instances
where a membrane behavior seems evident: Eardley and
Giddings [9], studying high-energy black hole collisions,
found a soap-bubble-like law for the process, while many
modern interpretations for black hole entropy and gravity
‘‘freeze’’ the degrees of freedom in a lower dimensional
space, in what is known as holography [10]. In Ref. [4] it
was shown that a membrane approach works surprisingly
well, yielding precisely the same results as the anti-
de Sitter/conformal field theory correspondence. There
have also been attempts to work the other way round:
computing liquid surface tension from the (analog) black
hole entropy [11].
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We consider here an interesting class of black objects
without spherical topology, the black branes, and treat
them as fluids with a surface tension subjected to (1) and
without gravity. A broad class of these objects are unstable
against gravity, in a mechanism known as Gregory-
Laflamme instability [12]. This is a gravitational instability
along the ‘‘extended’’ dimension, pictured in Fig. 1. We
will show that we can mimic most aspects of this instability
using the fluid analogy.

Take a black string with radius R0, and extended along
a direction z. Then the Gregory-Laflamme mechanism
makes any small perturbation with wavelength � of the
order of, or larger than, the radius of the cylinder R0 grow
exponentially with time. This is a very robust long-
wavelength instability.

The details for the instability can be found in the original
papers [12]. For wavelengths larger than a threshold �c, the
instability appears. In the general setup of black strings
with D� 1 spatial directions with radius R0 and a trans-
verse direction z, one finds [12] that the threshold wave
number increases with dimension number D and so does
the maximum growth time scale. For very large number of
dimensions, the threshold mode behaves as [13]

kc � 2�=�c �
����
D
p

=R0; (2)

Quite remarkably, we can find a similar instability for
fluids with surface tension, as shown in Plateau’s cele-
brated study [14] on the stability of bodies under the
influence of surface tension. He established a fundamental
result of classical continuum mechanics: a cylinder longer
than its circumference is energetically unstable to breakup.
This result was put on a firmer basis by Rayleigh [15], who
computed the exact instability time scale for the problem.
The reasoning for the appearance of an instability is the
following: consider a small disturbance of a long cylinder
(we take its axis as the z axis) of fluid with radius R0 and
height z. Considering a small axisymmetric perturbation
along the surface of the cylinder, we write for the disturbed
cylinder

r�z� � R0 � �R1 cos�kz� � �2R2; (3)

where � measures the perturbed quantities (R2 is a second
order quantity, and its usefulness will be understood
shortly). The volume of this cylinder can be easily com-
λ

z

R0 r(z)

= 2π /k

FIG. 1. Black strings and fluid cylinders are unstable to per-
turbations on the extended dimension, i.e., along the axis of the
cylinder. Ripples propagating along this axis grow exponentially
with time for wavelengths of order of the radius of the cylinder.
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puted to be

V � z�
�
R2

0 � �
2

�
2R0R2 �

R2
1

2

��
�O��3�: (4)

If we impose constant density one must have R2 � �
R2

1

4R0
.

With this condition, the surface area of the disturbed
cylinder is

A � z�
�

2R0 �
�2R2

1

2R0
�k2R2

0 � 1�
�
: (5)

The potential energy per unit length is therefore

P �
��2R2

1

2R0
�k2R2

0 � 1�T: (6)

We conclude that the system is unstable for k < 1=R0,
since in this case a perturbation of the form (3) decreases
the potential energy.

One can further show that nonaxisymmetric perturba-
tions, with profile r�z;�� � R0 � �R1 cos�kz� cos�m�� �
�2R2 (where m is an integer that identifies the angular
mode) are stable for any m � 0 [15]. The reason is that
the potential energy for these nonaxisymmetric modes is

given by P �
��2R2

1

2R0
�k2R2

0 � 1�m2�T, which never de-
creases for m � 0.

We can generalize the Rayleigh-Plateau construction to
a general number of dimensions. Take a hyper-cylinder
with D� 1 spatial directions with radius R0 and a trans-
verse direction z (for the previous example D � 3). The
axisymmetric threshold wave number is

R0kc �
�������������
D� 2
p

with kc � 2�=�c: (7)

For wave numbers smaller (larger wavelengths) than this
critical value the cylinder is unstable. Moreover, as in the
original Rayleigh-Plateau situation, only symmetric modes
seem to be unstable; nonaxisymmetric modes are in gen-
eral stable. Therefore, the Rayleigh-Plateau instability, like
the Gregory-Laflamme instability, should disappear for
modes other than the s modes. This was recently conjec-
tured by Hovdebo and Myers [16] using an argument based
on the relation between the thermodynamic and the
Gregory-Laflamme instabilities [17]. Kudoh [18] has ex-
plicitly verified that the Gregory-Laflamme instability only
affects s modes.

To motivate quantitatively the suggested association
between the Rayleigh-Plateau and the Gregory-Laflamme
instabilities, it is important to compare the dependence of
the threshold wave number kR0 on dimension D, for both
instabilities. This is done by comparing (2) with (7). In
Table I, we list the value of the Rayleigh-Plateau threshold
mode R0kc for several dimensions D. We also list the
threshold wave number for the Gregory-Laflamme insta-
bility, with values taken from [13]. There is good agree-
ment between them. In the large D limit there is exact
agreement: both the Gregory-Laflamme and the Rayleigh-
Plateau critical wave number behave as kcR0 �

����
D
p

. This
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FIG. 2 (color online). Rayleigh-Plateau instability of a hyper-
cylinder in several dimensions. Here the effective surface tension
and density were chosen to match those of a higher-dimensional
nonrotating black hole.

TABLE I. Dimensionless threshold wave number kR0 for the Rayleigh-Plateau instability of a
higher-dimensional fluid cylinder, and the corresponding threshold wave number for the
Gregory-Laflamme instability (data taken from Ref. [13]).

D spatial dimensions 4 5 6 7 8 9 49 99

Rayleigh-Plateau 1.41 1.73 2.00 2.24 2.45 2.66 6.78 9.80
Gregory-Laflamme 0.876 1.27 1.58 1.85 2.09 2.30 6.72 9.75
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is, we think, a nontrivial check on the conjecture that black
branes behave as fluid membranes with surface tension. We
can further compare the evolution of the instability time
scale with its wavelength, and study the dependence of the
instability time scale on the spacetime dimension. We
compute the Rayleigh-Plateau instability time scale using
fluid dynamics, following Rayleigh [15]. For a 3-
dimensional cylinder, and assuming the perturbation goes
as R1 � e

�t, Rayleigh gets the following expression for �:

�2 �
T

�R3
0

ikR0J00�ikR0�

J0�ikR0�
�1� k2R2

0�; (8)

with J being a Bessel function. We have generalized
Rayleigh’s procedure for higher dimensions, and the re-
sults are shown in Fig. 2. We assumed an effective surface
tension and density associated to the temperature and
energy density of a D-dimensional Schwarzschild black
hole. The qualitative behavior of the instability time scale
matches surprisingly well that of the Gregory-Laflamme
[12] one. In particular, note that (i) the maximum growth
rate grows with the number of spacetime dimensions, and
(ii) the corresponding wave number also grows with di-
mension numberD. Moreover, the location of the threshold
wave number is exactly as predicted with the energy argu-
ment [see Eq. (6)]. There is one discrepancy only: the
maximum instability for the Rayleigh-Plateau case, i.e.,
the maximum �, is approximately 1 order of magnitude
larger than the maximum of the Gregory-Laflamme. This
could be due to the complete neglect of gravity in the
outside of the cylinder (in the Rayleigh-Plateau analogy).
Indeed if one included gravity effects, a redshift was bound
to occur, thereby lowering � [19].

It is interesting to ask what is the endpoint of the
Rayleigh-Plateau instability. In four dimensions, the
Rayleigh-Plateau instability makes a cylinder pinch off,
giving rise to drop formation (see for instance the original
works [14,15] or the review work by Eggers [20]). To see
that this is expected, consider a D � 3 cylinder breaking
up at a Rayleigh-Plateau length, i.e., a cylinder of height
z � �c � 2�R0. Can this give rise to a drop of the same
volume? Same volume implies that the radius of the final
spherical drop would be 1:6765R0. This makes the surface
area of the drop smaller than the corresponding for the
cylinder, Sdrop � 0:8947Scyl, and thus it makes sense that a
drop is the final state. Now, if we play this geometrical
game in higher dimensions, we conclude that there is
critical dimension between D � 10 and D � 11. For D �
18160
11 a sphere seems not to be the favored endpoint, since it
no longer has less surface area. Once again, there is a very
similar phenomena in the gravity case (see, e.g., the dis-
cussion in Refs. [16,21,22]). Take a black string breaking
up at a Gregory-Laflamme length. Sorkin found a critical
spacetime dimension (d � D� 1) between d � 13 and
d � 14, above which the black string is no longer entropi-
cally unstable against the formation of a spherical black
hole [21]. It would be interesting to further study this issue.
In particular, it is important to understand what is the
endpoint of the Rayleigh-Plateau instability for D � 11,
and to find if in the fluid model there is a new branch of
solutions that would be the analogue of the nonuniform
black string solutions of Ref. [23], and if so to study their
stability.

It has been shown by Horowitz and Maeda [24] that
pinch-off, if it occurs at all in the black string case, must do
so in infinite affine time. This immediately suggests that an
attractive endpoint could be nonuniform black strings
[23,24]. Now, the breakup of liquid jets with surface ten-
sion in the absence of viscosity is known to happen in finite
time, but the inclusion of viscosity (which seems a neces-
sary ingredient to model realistic black objects [25]) may
change this [20], so even this unexpected feature might be
discussed within this analogue model. It is quite amusing
that some of the dynamical features of the instability of
black strings have already been observed in liquids: the
final state of some liquid bridges (finite-size liquid cylin-
ders), unstable under the Rayleigh-Plateau instability, is a
nonsymmetric state (see Ref. [26] and its references) and
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the breakup of liquid jets is quite generally a self-similar
phenomena [20].

The interpretation of T as surface tension can also
improve—and strengthen—our understanding of the in-
stability of ultraspinning black holes (Myers-Perry [27]
black holes with high rotation), a conjecture recently
made by Emparan and Myers in connection with the
Gregory-Laflamme instability [28]. Take a slowly rotating
black hole. As the rotation rate increases, the surface
becomes flatter at the poles until zero Gaussian curvature
occurs. But a liquid drop (at least in four dimensions)
develops instabilities before zero Gaussian curvature is
reached [29]. Assuming a correspondence between rotat-
ing liquid drops and rotating black holes, one may well
expect ultraspinning black holes to be unstable. We note
that this very same reasoning was applied by Smarr [8]
many years ago. In four dimensions, it seems that the upper
Kerr bound in the angular momentum is small enough to
avoid the development of such instabilities. However, in
dimensions higher than six, rotating black holes have no
Kerr-like bound, and the instability might well set in.

It is possible that an event horizon behaves dynamically
much as a fluid interface without gravity, as we have
shown. If this is so, the second law of black hole dynamics
should be something like a soap-bubble law: sphericity is
preferred for it is the minimum energy shape (which would
justify why most stable solutions in GR have spherical
topology). Finally, there are many ways to extend these
results, by including additional effects, like charge or
rotation in the problem. One would naively expect either
of these to increase the instability, but a more careful study
has to be done. Take rotation, for instance. The centrifugal
force, scaling with r, contributes with a destabilizing ef-
fect, since there is an increased pressure under a crest but a
reduced pressure under a trough. So, in principle, the
threshold wavelength should be smaller [30]. However,
there is no simple reasoning (as far as we know) to tell
the effects of rotation on the strength of the perturbation,
i.e., on the instability time scale. This is partly because the
effective surface tension of black hole itself depends on
rotation, decreasing with increasing rotation. This would
be an interesting direction for further study.
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