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Simple Model for Active Nematics: Quasi-Long-Range Order and Giant Fluctuations
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We propose a simple microscopic model for active nematic particles similar in spirit to the Vicsek
model for self-propelled polar particles. In two dimensions, we show that this model exhibits a Kosterlitz-
Thouless-like transition to quasi-long-range orientational order and that in this nonequilibrium context,
the ordered phase is characterized by giant density fluctuations, in agreement with the predictions of

Ramaswamy et al. [Europhys. Lett. 62, 196 (2003)].
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Over the last decade or so, physicists have been looking
for common, possibly universal, features of the collective
motion of animals, bacteria, cells, molecular motors, as
well as driven granular objects [1,2]. Among the emergent
properties of these groups of ‘““active” or self-propelled
particles (SPP), distinctively out-of-equilibrium features
have been found, such as the existence of long-range
orientational order in two-dimensional ‘ferromagnetic’
flocks of polar SPP [3.4].

Another set of striking intrinsically nonequilibrium
properties have recently been predicted by Ramaswamy
and co-workers [1,5,6]. They considered, in particular, the
case of apolar but oriented SPP and argued that such
“active nematics’ should differ dramatically from the
usual (equilibrium) case [7]. In particular, their approach,
based on the analysis of hydrodynamic equations derived
from symmetry arguments, predicts that giant density fluc-
tuations arise in the ordered phase of such media. In [1], it
is also hinted at the possibility of true long-range order and
of a different isotropic-nematic transition out of equilib-
rium, but no definitive statement is offered. Resolving
these issues is nevertheless crucial, especially in view of
the predicted giant density fluctuations, and all the more so
since, in polar SPP, the transition to true long-range order
was shown to be discontinuous [8].

In spite of the above-mentioned current surge of activity
in nonequilibrium systems, the giant density fluctuations
predicted by Ramaswamy and co-workers have not been
observed so far, and the nature of the nematically ordered
phase and of the transition leading to it have not been
elucidated. Experimentally, relevant systems such as colo-
nies of elongated cells [9] and ensembles of rodlike objects
driven by vibration [10—-12] have been studied, but with
other issues at stake. On the theoretical side, no micro-
scopic model has been proposed [13]. In this Letter, we fill
this gap, confirm for the first time the predictions of
Ramaswamy er al., and investigate the nature of the
isotropic-nematic transition in driven systems. We intro-
duce a simple model for active nematics, and show nu-
merically that its isotropic-nematic transition in two space
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dimensions does not differ significantly from the equilib-
rium case: only quasi-long-range (QLRO) order is attained,
with scaling laws compatible with those of the Kosterlitz-
Thouless (KT) transition. Nevertheless, giant density fluc-
tuations are clearly observed in the ordered phase: the
standard deviation An of n, the average number of particles
in a given subsystem, is proportional to n and not to /n as
expected in equilibrium.

Our model is similar in spirit to the Vicsek model for
polar SPP [3]. In a typical driven-overdamped dynamics,
identical pointwise particles move synchronously at dis-
crete time steps Az by a fixed distance vyAr. In two space
dimensions and for uniaxial nematics—the case to which
we restrict ourselves in the following—each particle j is
endowed with an orientation ¢; and moves along 6; or
0; + m with equal probabilities. At every time step, 0;“ is
given by ©(Q?), the direction of the first eigenvector of the
local tensorial traceless order parameter

Q- ( (cos?6,) — 1 (cosb; sin0k>)’ 0

(cosfy sinf)  (sin’6,) — 3

where the average is taken over all particles k within the
interaction range ry = 1 > vyAt, including particle j (in
this Letter, we use vgAt = 0.3). As for the Vicsek model,
disorder arises from the addition of a random angle to this
newly calculated orientation, and we have finally

0,14 = 0(Q) + o¢, @

where & is a delta-correlated white noise (§ € [—3.5D.
The interaction introduces a tendency to align (nemati-
cally) with neighboring particles, so that two simple limits
arise: complete orientational order settles in the absence of
noise, whereas particles perform random walks for maxi-
mal noise (o = 1). We first characterize the transition that
necessarily lies in between these two regimes. To this aim,
we calculate the total order parameter Q(N, L) measured
for N particles in a square domain of linear size L with
periodic boundary conditions. We use, in particular, the
scalar order parameter
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S = 2\/((coszt9> — 1)? + (cosfsinh)?, 3)

which is equal to twice the (positive) eigenvalue of Q, so
that S = 1 for perfect orientational order, and S = 0 for
complete disorder. Starting from random positions and
orientations, S typically grows in time and eventually
reaches a statistically stationary state characterized by a
well-defined distribution function of mean (S).

Varying the noise intensity o, we observe a continuous
change of (S). Increasing system size at fixed density p =
N/L?, the curves S(N) versus o reveal sharper transitions
for larger sizes, but they do not cross each other [Fig. 1(a)].
Figure 1(b) shows that (S(N)) ~ N~¢@)_ Increasing the
noise strength from o = 0 towards the transition zone,
/(o) increases from zero to take rather small values.
Sufficiently deep in the transition zone, the effective ex-
ponent {(o, N) = — 412 can be observed to cross over, as
N — oo, from these small values towards % [Fig. 1(c)], the
value observed at larger o and characteristic of a com-
pletely disordered phase. All these observations are in
qualitative agreement with an equilibrium KT transition
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FIG. 1 (color online). Transition to nematic order at density
p=N/L*>= % (a) (Time-averaged) scalar order parameter (S)
vs noise strength ¢ for various sizes. (b) (S) vs N at o = 0.02,
0.04, 0.06, 0.08, 0.1 from top to bottom; the lines are fitted power
laws. Each point represents an average over 10°~107 time steps
after transients. (c) Same as (b) but for larger noise values: o =
0.11,0.12,0.13,0.14,0.15,0.16,0.17,0.18. For large o values
these curves cross over to 1/+/N decay. (d) Exponents ¢ ex-
tracted from the power laws shown in (b) and (c) vs o. The line
linking the symbols is a (cubic) fit. For the last 2 points, the
exponent is only effective, as it was estimated from small N
values, before signs of crossover appear. The dotted lines in-
dicate the threshold o, = 0.113(5) estimated from the condition
{(0) = {% (see text).

[15], and signal that only QLRO order is present in the
ordered phase. At the quantitative level, the location of the
KT transition point in an equilibrium system is character-
ized by { = %. Our data are consistent with this: for p =
3. we find { = at 0. =0.113(5), and for larger noise
values (o, N) show signs of crossing over to % (i.e., one is
in the disordered phase).

These observations are strengthened by the study of the
orientational spatial correlation functions g,,,(r) =
(cos{2m[0(0) — 6(r)]}) (here m is integer and averages
are taken both in space and time). They decay algebraically
at low noise values [g5,,(r) ~ r~™7 with 7 also increasing
with o] and exponentially in the disordered phase (with a
diverging correlation length £ as o approaches the critical
point) [Figs. 2(a) and 2(b)]. At a quantitative level, one
expects that in equilibrium 7(o) = 4{(o) in the ordered
phase [15]. This is roughly borne out of our data, even
though good estimates of the correlation functions are
difficult to obtain close to the transition. In the disordered
phase, in particular, the expected divergence of £ is ob-
served [Fig. 2(c)] but not in its expected functional depen-
dence as ¢ can only be safely estimated rather far away
from threshold. Despite these difficulties, we can check

(a) (b)
——— — ‘ :
&'f ]
|
10 r
©)
40— ‘ ‘
Sl °
|
i
0 e -
|
i
} [ ]
[ ]
01 | *ee o | S N
0.1 0.2 o 0.3 10 r 100

FIG. 2 (color online). Orientational correlation function g,(r)
as calculated from the orientation field coarse grained over boxes
of linear size 4 [p = %, time average over 10°—107 time steps
after transients for each run, L = 256 in (a), (d), and L = 128 in
(b)]. (a) In log-log scales at small noise values o = 0.02, 0.04,
0.06, 0.08, 0.10, 0.11, 0.12, and 0.13 from top to bottom. (b) In
lin-log scales for o = 0.14 to 0.3 from top to bottom. (c) Varia-
tion of the correlation length ¢ extracted from the exponential
tails in (b) as the transition point is approached (dashed line at
the estimated threshold o, = 0.113). (d) Same as in (a), data
multiplied by the expected exponent at threshold ., = % : around
the estimated threshold value o, = 0.113(5), the curves are flat
and straight.
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that the critical noise level determined above is consistent
with our correlation function data [Fig. 2(d)].

The above results are characteristic of QLRO order and
of a KT-like phase transition. Further preliminary results
[16] show that the disclination unbinding mechanism char-
acteristic of the KT transition [17] is also at work in our
nonequilibrium context. All this indicates the proper but
costly methodology to locate the critical noise level o.. We
have not, so far, used this protocol extensively, but ongoing
simulations indicate that the critical line may scale like
0.~ p¥* and extend to arbitrarily small densities and
noise levels.

In spite of the equilibriumlike properties of the transition
to QLRO, the nonequilibrium character of the problem
manifests itself in strong density fluctuations, as predicted
by Ramaswamy et al. [6]: we measured, in the ordered
phase, the density fluctuations in square boxes of linear
size € embedded in a square domain of linear size L. These
boxes contain, on average, (n) = p{? particles. As long as
€ < L, An, the rms of the fluctuations of n, scales linearly
with (n) (and not \/n), in agreement with [6] (Fig. 3). These
giant number fluctuations are the statistical consequence of
the complex, coupled, spatiotemporal dynamics of density
and orientation in the system. After transients, low- and
high-density regions emerge with the highly populated
domains taking the form of bands inside which nematic
order is strong (Fig. 4). These bands evolve (move, split,
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FIG. 3 (color online). Root mean square density fluctuations
An in square boxes containing (n) particles on average (linear
size € = /n/p, p =1, time average over 10°~107 time steps
after transients). The saturation at large (n) occurs when ¢ =~ L.
Top two curves: giant fluctuations in the ordered phase at 2
different system sizes. Bottom curve: normal fluctuations in the
disordered phase.
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merge, dissolve, and form again along a new direction)
over very long time scales. Typically, however, a single
band is present at any given time, independently of the
system size, and its characteristic evolution time grows
with system size. Thus, contrary to what has been observed
in the polar SPP case [8], these structures have no well-
defined length or time scales. Ongoing work aims at quan-
tifying these statements [16].

We now comment on our results. In our model, the
density and orientation fields are coupled intimately.
Whether the mechanism put forward in [6]—namely that
the current in the conservation equation for the concentra-
tion has a contribution proportional to (9,6, d,6)—is ac-
tually present here remains to be seen explicitly, but we
believe that this is the case because the general symmetry
arguments invoked there must apply. As a matter of fact, in
our model, intrinsically nonequilibrium features are still
observed when the displacement of the particles is not
made along their orientation—the ‘‘natural” case if one
has in mind particles with an elongated physical shape—
but, for instance, perpendicularly to their axis (not shown).
On the other hand, displacing them randomly along one of
the four directions defined by adding multiples of 7 to their
current angle yields normal fluctuations (An ~ /n) and no
segregation (not shown). This is not surprising since then
particles effectively perform random walks on scales larger
than the elementary displacement. This case is thus equiva-
lent to strictly decoupling density fluctuations from the
orientation field by letting particles be noninteracting ran-
dom walkers. Apart from such ‘“equilibrium” cases, it
seems that any coupling generically triggers giant fluctua-
tions. In fact, it seems that this robust feature is also present
when the orientation is imposed externally, influencing the
particle motion without feedback [14].

Whereas giant number fluctuations are easily observed,
we have not been able to measure the slow decay of tagged-
particle velocity autocorrelations also predicted in [6]. We
believe this is because the only significant motion in our
model, apart from the microscopic random displacements,
is due to the very slow dynamics of the high-density bands
(Fig. 4). Thus, we expect such an effect to be only observ-
able on time scales so large that they are not easily
accessible.

The giant number fluctuations taken as the signature of
the “nonequilibriumness” of the system are tantamount to
the formation of the high-density ordered band described
above (Fig. 4). Whether this is “‘true” macroscopic phase
separation is thus a key question [14]. Here we have shown
that despite this spectacular phenomenon, the phase tran-
sition is similar, as far as we can tell numerically, to the
equilibrium one, with an ordered phase characterized by
QLRO only. This has to be paralleled to the case of polar
SPP, where true long-range order is ascertained [4], and the
transition is discontinuous (i.e., first-order-like) [8]. At
equilibrium, the Mermin-Wagner theorem states that true
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FIG. 4 (color online). Typical time series of S in the ordered
phase. (p = %, L =128, o0 = 0.1). Note the large excursions to
small § values which make time averaging difficult. (b)—
(d) Snapshots taken during the run shown in (a) at the times
indicated there. For each particle, a small segment (of arbitrary
length) centered on its position and aligned on its orientation is
drawn. (b), (d) are typical ordered states, while (c) represents the
more disordered episodes when the macroscopic structure
changes orientation.

LRO cannot arise from the spontaneous breaking of a
continuous symmetry in two dimensions [18]. Out of equi-
librium, this constraint disappears [1,4], and it is quite
interesting to notice that polar and nematic SPP behave
differently. Note also that for polar particles the ordered
phase is not density homogeneous, but typically consists of
well-defined solitary bands with high-density and strong
order moving in a low-density disordered background [8].
These bands, which can appear in arbitrary numbers de-
pending on the system geometry, are very different from
the single, fluctuating, splitting, and merging object de-
scribed here in Fig. 4. Thus, combining the present con-
clusions and the results obtained recently on polar SPP, we
see clearly how the nonequilibrium nature of these non-
linear driven systems can emerge differently at the collec-
tive level.

To summarize, we have introduced a simple model for
active nematic particles in which the density and orienta-
tion fields are coupled in a natural way. This nonequilib-
rium model exhibits a KT-like phase transition to a
nematically ordered phase in which giant density fluctua-
tions arise. This constitutes a first nontrivial confirmation
of the intrinsically nonequilibrium properties predicted in
[6] and calls for further experimental studies, either with

assemblies of granular elongated particles or, better, in
biological systems where such effects could play an im-
portant role. In view of the notorious difficulties encoun-
tered to decide about similar issues in the case of polar
particles, our results will need to be confirmed by a proper
renormalization group analysis. On the modeling side,
finally, our approach can easily be extended to other space
dimensions and/or to more complex types of interactions.
Future work will explore these issues, in particular, three-
dimensional systems and the nature of tetratic order out of
equilibrium.

We thank Sriram Ramaswamy for fruitful exchanges and
the communication of his recent results [14].
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