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Bose-Fermi Mixtures in a Three-Dimensional Optical Lattice
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We have studied mixtures of fermionic 40K and bosonic 87Rb quantum gases in a three-dimensional
optical lattice. We observe that an increasing admixture of the fermionic species diminishes the phase
coherence of the bosonic atoms as measured by studying both the visibility of the matter wave interference
pattern and the coherence length of the bosons. Moreover, we find that the attractive interactions between
bosons and fermions lead to an increase of the boson density in the lattice which we measure by studying
three-body recombination in the lattice. In our data, we do not observe three-body loss of the fermionic
atoms. An analysis of the thermodynamics of a noninteracting Bose-Fermi mixture in the lattice suggests a
mechanism for sympathetic cooling of the fermions in the lattice.
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FIG. 1 (color online). Interference pattern of bosonic atoms
released from a three-dimensional optical lattice for varying
admixture of NF fermionic atoms at a value UBB=zJB � 5.
The bosonic atom numbers are (a) and (b) NB � 1:2� 105

and (c) NB � 8� 104, and the image size is 660 �m�
660 �m. The coordination number of our lattice with simple
cubic geometry is z � 6.
Quantum liquids and quantum gases are remarkable
objects which reveal macroscopic quantum phenomena,
such as superfluidity and Bose-Einstein condensation.
These fundamental concepts have profoundly influenced
our understanding of quantum many-body physics. The
distinct behavior observed for purely bosonic or purely
fermionic systems sheds light on the role played by quan-
tum statistics. New insights can be attained by mixing
bosonic and fermionic species. One of the most prominent
examples is a mixture of bosonic 4He and fermionic 3He.
There it has been observed that, with increasing admixture
of 3He, the critical temperature of the transition between
the superfluid and the normal fluid phase is lowered,
and below the tricritical point phase separation is encoun-
tered [1].

In trapped atomic gases, mixing of bosonic and fermi-
onic species has led to the observation of interaction in-
duced losses or collapse phenomena [2,3] and collisionally
induced transport in one-dimensional lattices [4]. In this
Letter, we report on the creation of a novel quantum sys-
tem consisting of a mixture of bosonic and fermionic
quantum gases trapped in the periodic potential of a
three-dimensional optical lattice. The optical lattice allows
us to change the character of the system by tuning the depth
of the periodic potential. This leads to a change of the
effective mass and varies the role played by atom-atom
interactions. The interaction between bosonic and fermi-
onic atoms interconnects two systems of fundamentally
different quantum statistics, and a wealth of physics be-
comes accessible which is beyond that of the purely bo-
sonic [5,6] or purely fermionic [7,8] case. A variety of
theoretical work has been devoted to Bose-Fermi mixtures
in optical lattices, and new quantum phases have been
predicted at zero temperature [9–12]. Moreover, the cou-
pling between a fermion and a phonon excitation in the
Bose condensate mimics the physics of polarons [13]. At
finite temperature, phase transitions to a supersolid state
and phase separation are expected [14].

In our experiment, we prepare fermionic 40K atoms
together with a cloud of Bose-Einstein condensed 87Rb
06=96(18)=180402(4) 18040
atoms. The qualitative behavior when changing the mixing
ratio between bosons and fermions is depicted in Fig. 1.
The momentum distribution of the pure bosonic sample
shows a high contrast interference pattern reflecting the
long-range phase coherence of the system. Adding fermi-
onic particles results in the loss of phase coherence of the
Bose gas, i.e., a diminishing visibility of the interference
pattern and a reduction of the coherence length.

Our experimental setup used to produce a degenerate
mixture of a Bose and a Fermi gas has been described in
detail in previous work [8]. In brief, fermionic 40K atoms
are sympathetically cooled by thermal contact with bo-
sonic 87Rb atoms, the latter being subjected to forced
microwave evaporation. The potassium atoms are in the
hyperfine ground state jF � 9=2; mF � 9=2i and the ru-
bidium atoms in the hyperfine ground state jF � 2; mF �
2i. After reaching quantum degeneracy for both species,
we transfer both clouds into a crossed beam optical dipole
trap operating at a wavelength of 826 nm. The laser beams
for the optical dipole trap are aligned in a horizontal plane,
and their elliptical waists have 1=e2 radii of approximately
50 and 150 �m in the vertical (z) and horizontal (x; y)
directions, respectively. In the optical trap, we perform
evaporative cooling by lowering the power in each of the
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laser beams to ’ 35 mW. After recompression, the optical
dipole trap has the final trapping frequencies
�!x;!y;!z� � 2�� �30; 35; 118� Hz for the rubidium
atoms. We estimate the condensate fraction to be 90%
and use this value to obtain the temperature of both clouds.
The Fermi temperature TF in the optical dipole trap is set
by the number of potassium atoms and the trapping fre-
quencies, and we obtain T=TF ’ 0:3, which is in agree-
ment with a direct temperature measurement of the
fermionic cloud.

The three-dimensional optical lattice is generated by
three mutually orthogonal laser standing waves at a wave-
length of � � 1064 nm and a mutual frequency difference
of several 10 MHz. Each of the standing wave fields is
focused onto the position of the quantum degenerate gases,
and the 1=e2 radii of the circular beams along the �x; y; z�
directions are �160; 180; 160� �m. To load the atoms into
the optical lattice, we increase the intensity of the lattice
laser beams using a smooth spline ramp with a duration of
100 ms. This ensures adiabatic loading of the optical lattice
with populations of bosons and fermions in the lowest
Bloch band only. We have checked the reversibility of
the loading process into the optical lattice by reversing
the loading ramp and, subsequently, let the particles equili-
brate during 100 ms in the optical dipole trap without
evaporation. We measure that for both the pure Bose gas
and the Bose-Fermi mixture the condensate fraction de-
creases by ’ 1:4% per ER of lattice depth, where ER �
h2=2mRb�

2 denotes the recoil energy and mRb the mass of
the rubidium atoms.
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FIG. 2 (color online). (a) Visibility of the Bose-Fermi mixture
in the optical lattice for various mixing ratios between bosons
and fermions. The intersection between the dashed lines defines
the characteristic value �UBB=zJB�c. The inset shows the princi-
ple of the measurement (see text). (b) Measurement of the width
of the central momentum peak which reflects the inverse of the
coherence length of the gas. The inset shows how the peak width
is extracted from the column sum of the optical density. The
dashed line indicates the upper constraint of the width imposed
by the fitting routine, and the error bars reflect the fit uncertainty.
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The physics of the Bose-Fermi mixture in an optical
lattice can be described by the Bose-Fermi Hubbard model
(e.g., [10]). The parameters of the model are the tunneling
matrix elements JB;F for bosons and fermions, respectively,
and the on-site interaction strength UBB between two bo-
sons and UBF between bosons and fermions. Using the
most recent experimental value of the K-Rb s-wave scat-
tering length [15], we obtain UBF=UBB � �2.

We have studied the phase coherence of the bosonic
atoms in the optical lattice for various admixtures of fer-
mionic particles. We switch off the optical lattice quickly
and allow for 25 ms of ballistic expansion before taking an
absorption image of the atomic cloud. From the absorption
image, we measure the visibility of the interference pat-
tern. We determine the maximum nmax and the minimum
nmin of the density of the atoms at a momentum j ~qj � 2@k,
with k � 2�=� [see inset in Fig. 2(a)] [16]. From this, we
calculate the visibility V � �nmax � nmin�=�nmax � nmin�.

For the purely bosonic case, we obtain results similar to
previous measurements [16–18]. In our data [see
Fig. 2(a)], the visibility V starts to drop off at a character-
istic value �UBB=zJB�c � 6:5. For larger values of
UBB=zJB, the decrease in visibility is approximated by
V / �UBB=zJB��, with � � �1:41�9�, which is consistent
with our earlier measurement in a different lattice setup
giving � � �1:36�5� [17] but different from the exponent
� � �0:98�7� obtained in Ref. [16]. For a mixture of
bosonic and fermionic atoms, the results change; see also
[19]. Whereas in the superfluid regime for very low values
of UBB=zJB the visibility is similar to the pure bosonic
case, the presence of the fermions decreases the character-
istic value �UBB=zJB�c beyond which the visibility drops
off significantly. Nevertheless, the visibility still shows a
power-law dependence on UBB=zJB with an exponent in
the range of �1< �<�1:5.

To quantify the shift of the visibility data towards
smaller values of UBB=zJB, we have fitted the power-law
decay for large values of UBB=zJB and extrapolated the
slope to the visibility for the superfluid situation [dashed
lines in Fig. 2(a)]. The intersection defines the character-
FIG. 3. Decrease of the coherence of the Bose gas in the lattice
vs the admixture of fermions.
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istic value �UBB=zJB�c, which depends on the mixing ratio
between fermions and bosons NF=NB as shown in Fig. 3.
From this graph, it is evident that even very small admix-
tures of fermionic atoms change the coherence properties
of the bosonic cloud significantly.

The phase coherence of the bosons in the lattice is not
only described by the visibility of the interference pattern
but also by the coherence length of the sample [17,20]. In a
superfluid state, the coherence length is comparable to the
size of the system. The coherence length is related to the
inverse of the width of the zero-momentum peak plus a
small contribution from the repulsive interaction between
the bosonic atoms. For the pure bosonic case, we find that
this width starts to increase at a value of �UBB=zJB�c � 9
[see Fig. 2(b)]. For the case of a Bose-Fermi mixture, this
value is dramatically altered: For an increasing admixture
of fermionic atoms to the bosonic sample, the value de-
creases and it behaves very similar to the corresponding
value �UBB=zJB�c for the visibility (see Fig. 3).

Our interpretation of the simultaneous decrease of both
the coherence length and the visibility with increasing
admixture of fermions is that the system leaves the super-
fluid phase. While for the pure bosonic case this indicates a
Mott insulator transition [16,17], for the mixture the analy-
sis is more delicate due to the different interactions and the
different quantum statistics of the two species. The full
understanding of the observed effects including strong
interactions and finite temperature is challenging. We will
consider two limiting situations, namely, a strongly inter-
acting Bose-Fermi mixture at T � 0 in which polarons and
composite fermions are formed and a noninteracting mix-
ture at finite temperature. In both explanations, we encoun-
ter a destruction of the superfluid with increasing fermionic
admixture which qualitatively reflects our results.

At zero temperature, several quantum phases of the
system are predicted [10–14], depending on the sign and
the strength of the Bose-Fermi interaction. At low depth of
the optical lattice, the interaction of the Bose-Einstein
condensate with the Fermi gas leads to the depletion of
the condensate [21] and to the formation of polarons where
a fermion couples to a phonon excitation of the condensate
[13]. The coupling strength of the fermions to the phonon
modes depends on UBF and the ratio UBB=JB. If the cou-
pling becomes very strong, the system is unstable to phase
separation (UBF > 0) or to collapse (UBF < 0). In the
stable regime, the polarons can form a p-wave superfluid
or induce a charge density wave, as has been analyzed in
one spatial dimension [13]. The enhanced bosonic density
around a fermionic impurity increases the effective mass of
the fermion and might enhance the tendency of the bosons
to localize. For our parameters, the phonon velocity is
comparable to the Fermi velocity, a regime that is usually
inaccessible in solids. On the other hand, the interaction of
the Bose gas with the second species leads to an effective
attractive interaction between the bosons which would
favor a Mott insulator transition at a larger depth of the
optical lattice [13]. At a larger depth of the optical lattice,
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other effects also come into play. Composite fermions con-
sisting of one fermion and nB bosons form when the bind-
ing energy of the composite fermion exceeds the gain in
kinetic energy that the particles would encounter by deloc-
alizing. An effective Hamiltonian for these (spinless) com-
posite fermions with renormalized tunneling and nearest
neighbor interaction has been derived, and their quantum
phases have been investigated theoretically [9,10]. In this
situation, the Bose-Einstein condensate can be completely
depleted by the interactions between bosons and fermions.

For the finite temperature model of the noninteracting
gas, we consider the entropy of the cloud of bosons and
fermions, which is S��NFT=TF��NB�T=Tc�3. TF�
@ �!F�6NF�1=3 denotes the Fermi temperature for NF fermi-
ons in a trap with frequency �!F and Tc�@ �!B�NB=��3��1=3

the critical temperature for Bose-Einstein condensation
with � and � being numerical constants. When increasing
the depth of the optical lattice adiabatically, the tempera-
tures of the two species remain equal to each other due to
collisions, while Tc and TF evolve very differently. This is
due to the fact that the tunneling rates for the fermions are
up to an order of magnitude larger than for the bosons for
our lattice parameters. Since the effective masses m�B;F /
1=JB;F enter into the degeneracy temperatures, Tc de-
creases much faster than TF. At constant entropy, this
results in adiabatic heating of the bosonic cloud and a
reduction of the condensate fraction. Simultaneously, the
fermionic cloud is cooled adiabatically, similar to the
situation considered without a lattice in Ref. [22]. For the
noninteracting mixture with our parameters, one expects a
reduction of T=TF by a factor of approximately 2 at a
lattice depth of 20ER.

In the experiment, we have further studied the occupa-
tion of the optical lattice by measuring three-body recom-
bination. Lattice sites with a higher occupation than two
atoms are subject to inelastic losses where a deeply bound
molecule is formed and ejected from the lattice together
with an energetic atom. Independent of their occupation,
all lattice sites are furthermore subject to loss processes
such as off-resonant light scattering, background gas colli-
sions, or photoassociation due to the trapping laser light.
The attractive interaction between the bosons and the fer-
mions changes the occupation of bosons on the sites of the
optical lattice. For the given ratio of the on-site interaction
strength of UBF=UBB ’ �2, it is energetically favorable to
have up to five bosons per site if a fermion is present.

The experimental sequence to study the three-body de-
cay starts from an initially superfluid Bose gas at a poten-
tial depth of 10ER. We use a ramp time of 30 ms to increase
the potential depth of the lattice from zero to 10ER during
which we do not observe a loss of atoms. Subsequently, we
freeze the atom number distribution by quickly changing
the lattice depth to a large value of 18ER, where the
tunneling time of the bosons is �B � 1=zJB � 23 ms. We
monitor the total atom number as a function of the hold
time in the deep optical lattice (see Fig. 4) and observe two
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FIG. 4 (color online). Decay of a pure bosonic gas (squares)
and a Bose-Fermi mixture (circles) in the optical lattice. The fast
initial decay of the bosons is much more pronounced in the
mixture, reflecting the higher density due to Bose-Fermi attrac-
tion. For the fermions, hardly any loss is observed. The error bars
indicate statistical errors from three repetitive measurements.
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distinct time scales of the decay of the atoms. The fast
initial time scale is due to three-body losses from multiply
occupied lattice sites. The slower decay is due to single-
particle loss processes.

To extract quantitative information from the loss curves,
we fit the data with the following model. We assume that
any singly or doubly occupied site decays with a single-
particle loss rate �1. Multiply occupied sites decay with a
rate determined by the three-body loss constant KB

3 �
1:8� 10�29 cm6=s [23] and the three-body density
	n�r�
3 at the lattice site. Since we start from a superfluid,
the number distribution at the lattice sites can be approxi-
mated by a coherent state with a third order correlation
function being equal to unity [24]. We calculate the three-
body loss rate assuming Gaussian ground state wave func-
tions at each lattice site to be �3 � 0:24� n3

B s�1, where
nB is the number of bosons on the site. By fitting the data
with this model, we extract the occupation of the lattice.
We obtain n1;2 � 67�3�% of the sites with single or double
occupation, n3 � 23�9�% sites with triple occupation, and
n4 � 10�8�% of lattice sites with occupation four. A mean
field calculation neglecting tunneling yields the theoretical
values �n1;2�58%, �n3 � 33%, and �n4 � 17%, which gives
reasonable agreement given the simplicity of the model.
The slow decay rate is determined to be 0:35�7� s�1.

Upon adding fermions to the system, we find a much
faster initial decay due to three-body loss for the rubidium
atoms. The single-particle loss constant is, however, the
same. In contrast, for the fermionic atoms, we do not ob-
serve a particle loss of a comparable order of magnitude.
This suggests that the observed loss is only due to three-
body recombination between three rubidium atoms. Recent
results have suggested that the three-body loss constant
KBF

3 for K-Rb-Rb collisions is an order of magnitude larger
than for Rb-Rb-Rb collisions [3]. This is not consistent
with our data, since we do not observe the corresponding
fast loss of potassium atoms, similar to previous results
[25].
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In conclusion, we have investigated a Bose-Fermi mix-
ture in a three-dimensional optical lattice. We have ob-
served that the presence of fermions changes the coherence
properties of the Bose gas and substantially enhances the
three-body loss of bosonic atoms. Bose-Fermi mixtures in
an optical lattice promise to be an incredibly rich quantum
system [9–14]. A number of Feshbach resonances between
87Rb and 40K [15,26] exist which will give access to
various quantum many-body regimes predicted in the lit-
erature as well as to the creation of ultracold heteronuclear
molecules.
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