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Positronium Collapse and the Maximum Magnetic Field in Pure QED

A. E. Shabad1 and V. V. Usov2

1P. N. Lebedev Physics Institute, Moscow 117924, Russia
2Center for Astrophysics, Weizmann Institute of Science, Rehovot 76100, Israel

(Received 19 January 2006; published 8 May 2006)
0031-9007=
A maximum value for the magnetic field is determined, which provides the full compensation of the
positronium rest mass by the binding energy in the maximum symmetry state and disappearance of the
energy gap separating the electron-positron system from the vacuum. The compensation becomes possible
owing to the falling to the center phenomenon. The maximum magnetic field may be related to the
vacuum and describe its structure.
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A common feature of compact astronomical objects:
white dwarfs, neutron stars, and accretion disks around
black holes, is a very strong magnetic field. It is believed
that neutron stars possess the strongest observed magnetic
fields. The field strength is in the range from �108 G to
�1014 G for radio pulsars identified with rotation-powered
neutron stars [1], and may be as high as �1015 G for soft
gamma-ray repeaters [2], or even higher (�1016–1017 G)
for the sources of cosmological gamma-ray bursts [3].
Much more intense magnetic fields have been conjec-
tured to be involved in several astrophysical phenomena.
For instance, superconductive cosmic strings, if they
exist, may have magnetic fields up to �1047–1048 G in
their vicinities [4]. Magnetic fields of�1047 G may be also
produced in our Universe at the beginning of the infla-
tion [5]. The fundamental physical problems are how
large the field strength can be in nature, and how the
properties of the vacuum change when magnetic fields
approach the extremity. It is accepted that magnetic fields
are stable in pure quantum electrodynamics (QED), and
another interaction (weak or strong) or magnetic mono-
poles have to be involved to make the magnetized vacuum
unstable [6].

In this Letter, working solely in QED, we find that there
exists a maximum value of the magnetic field that de-
limits the range of its values admitted without revising
QED. Its value is many orders of magnitude less than B �
B0 exp�3�=�� (here � � e2=4� ’ 1=137, B0 � m2=e �
4:4� 1013 G, m is the electron mass, @ � c � 1 through-
out), the value that restricts the range of validity of QED
due to the lack of asymptotic freedom [7]. The maximum
magnetic field causes the shrinking of the energy gap
between an electron and positron.
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We exploit the unboundedness from below of the energy
spectrum for sufficiently singular attractive potentials,
known as the ‘‘falling to the center’’ [8]. For e�e� system
in a magnetic field B this phenomenon is caused by the
ultraviolet singularity of the photon propagator and occurs
in the limit B!1. It takes place independently of
whether nonrelativistic or relativistic description is used,
and is associated with dimensional reduction due to the
charged particles being restricted to the lowest Landau
levels [see the pioneering work of Loudon [9] and other
works out of which most important for our present theme
are [9–11] ]. Using the Bethe-Salpeter (BS) equation for
the electron-positron system, with the relative motion of
the two particles treated in a strictly relativistic way, we
show that at a maximum value of the magnetic field, which
may be of an astrophysical significance, the rest energy of
the system is compensated for by the mass defect; i.e., the
system is not separated from the vacuum by an energy gap.
We refer to this situation as a collapse of positronium.

In processing the formalism and interpreting the results,
especially while discussing the vacuum structure, we use
the theory of the falling to the center developed in [12] that
implies deviations from the standard quantum theory man-
ifesting themselves when extremely large electric fields
near the singularity become important [13].

We proceed from the (3� 1)-dimensional BS equation
in an approximation, which is the ladder approximation
once the photon propagator (in the coordinate space) is
taken in the Feynman gauge: Dij�x� � gijD�x2�, x2 �

x2
0 � x2, gij is the metrics, gii � �1;�1� 1� 1�. In an

asymptotically strong magnetic field this equation may be
written in the following (1� 1)-dimensional form [see our
detailed paper [14] for the derivation], covariant under the
Lorentz transformations along the axis 3:
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where ��t; z� is the 4� 4 (Ritus transform of) BS amplitude, t � xe
0 � x

p
0 and z � xe

3 � x
p
3 are the differences of the

coordinates of the electron (e) and positron (p) along the time x0 and along the magnetic field B � �0; 0; B3 � B�,
respectively. Pk and P? are projections of the total (generalized) momentum of the positronium onto the �0; 3� subspace
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and the �1; 2� subspace, respectively. Only two Dirac
gamma matrices, �0;3, are involved, @̂k � �0@=@t�
�3@=@z, P̂k � P0�0 � P3�3.

Equation (1) is valid in the coordinate domain, where the
argument of the function D is greater than the electron
Larmour radius squared �LB�2 � �eB��1. When B � 1,
the domain of validity covers the whole exterior of the light
cone z2 � t2 	 0. The Lorentz-invariant expansion of �
over matrix basis contains four independent scalar compo-
nents, whose number diminishes to three if Pk � 0. The
argument of the original photon propagator �xe � xp�2 has
proved to be replaced in (1) by t2 � z2 � �~xe

? � ~xp
?�

2 �

t2 � z2 � P2
?=�eB�

2, where ~xe;p
? are the center of orbit

coordinates of the two particles in the transverse plane.
Now that after the dimensional reduction this subspace no
longer exists these substitutes for the transverse particle
coordinates themselves: ~xe;p

? are not coordinates, but quan-
tum numbers of the transverse momenta. The mechanism
of replacement of a coordinate by a quantum number is the
same as in [10].

In deriving Eq. (1) the expansion over the complete set
of Ritus matrix eigenfunctions [15] was used in [14] that
accumulate the dependence on the transverse spatial and
spinorial degrees of freedom. This expansion yields an
infinite set of equations, where different pairs of Landau
quantum numbers ne, np are entangled, Eq. (1) being the
equation for the ne � np � 0 component that decouples
from this set in the limit B � 1.

In the ultrarelativistic limit P0 � P3 � 0 Eq. (1) is
solved by the most symmetric Ansatz � � I�, where I
is the unit matrix, and becomes

���2 �m2���t; z� � i16��D
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(2)

Here �2 � �@2=@t2 � @2=@z2 is the Laplace operator.
Equations for the rest two invariant coefficients, other
than the singlet �, are considered in [14].

The ultraviolet singularity on the light cone (x2 � 0) of
the free photon propagator, D�x2� � ��i=4�2�1=x2, after
one substitutes this expression into Eq. (2) taken for the
lowest energy state P2

? � 0, leads to falling to the center in
the Schrödinger-like differential equation
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to which the radial part of Eq. (2) is reduced in the most
symmetrical case, when the wave function ��x� �
s�1=2��s� does not depend on the hyperbolic angle � in
the spacelike region of the two-dimensional Minkowsky

space, t � s sinh�, z � s cosh�, s �
���������������
z2 � t2

p
.

The solution that decreases at s! 1 is given by the
McDonald function with imaginary index:

��s� �
���
s
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It behaves near the singular point s � 0 as�
s
2
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Here the Euler � functions appear. The falling to the center
manifests itself [8] in the complexity of the exponents in
(5) that makes the both asymptotic terms oscillating and
equal in rights. The falling to the center holds for any
positive �, the genuine value � � 1=137 included, unlike
the case without the magnetic field, where nonphysically
large values of the fine structure constant, �> �=8, are
required to provide it [14,16]. Equation (3) is valid in the
interval

s0 
 s 
 1; s0 � �eB��1=2: (6)

Thus, the Larmour radius serves as a regularizing length.
According to [12], the singular Eq. (3) should be consid-
ered as the generalized eigenvalue problem with respect to
�. The operator in the left-hand side is self-adjoint pro-
vided the boundary condition is imposed,

��s0� � 0; (7)

that treats the Larmour radius as the lower edge of the
normalization box. The discrete eigenvalues �n�s0� con-
dense in the limit B � 1 (s0 � 0) to become a continuum
of states that make the Hilbert space of vectors orthogonal
with the singular measure s�2ds. The latter fact allows us
to normalize them to � functions and interpret as free
particles emitted and absorbed by the singular center. In
order that the Larmour radius might be treated as the edge
of the box it is necessary that s0 be much smaller than the
electron Compton length, s0 � m�1 ’ 3:9� 10�11 cm.
Then the small-distance asymptotic regime is reached,
and the behavior of the system ‘‘behind the horizon,’’
s < s0—where the two-dimensional Eqs. (1)–(3) are not
valid—is not important. In this way the existence of the
limit s0 ! 0, impossible in the standard theory, is achieved
[17].

Beginning with a certain small value of the argument
ms, the function K��ms� oscillates, as s! 0, and takes the
zero value infinitely many times. To find the largest value
of s0, for which the boundary problem (3) and (7) can be
solved, one can use (5). Then Eq. (7) reads

� ln
ms0

2
� i arg���� 1� � i�n; n � 0;
1;
2; . . . :

(8)

Since j�j is small we may exploit the approximation ��1�
�� ’ 1� �CE, where CE � 0:577 to get

ln
�
ms0

2

�
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n
2

������
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�

s
� CE; n � 1; 2 . . . : (9)

We have expelled the nonpositive integers n from here,
since they would lead to the roots forms0 of the order of or
larger than unity in contradiction to the adopted condition
s0 � m�1. For such values Eq. (5) is not valid. It may be
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checked that there are no other zeros of McDonald func-
tion, apart from (9). The maximum value for s0 is provided
by n � 1:

smax
0 �

2

m
exp

�
�

1

2

������
�3

�

s
� CE

�
’ 10�14 m�1; (10)

i.e., smax
0 is about 14 orders of magnitude smaller than m�1

and makes�10�25 cm. By demanding, in accord with (6),
that the value of smax

0 should exceed the Larmour radius

smax
0 � LB � �eB�

�1=2 or B�
1

e�smax
0 �2

; (11)

one establishes how large the magnetic field should be in
order that the boundary problem might have a solution, in
other words, that the point P0 � P � 0 might belong to the
spectrum. Therefore, if the magnetic field exceeds the
maximum value of

Bmax ’
1

e�smax
0 �2

’
m2

4e
exp

�
�3=2����
�
p � 2CE

�
; (12)

the positronium ground state with the center-of-mass 4-
momentum equal to zero exists [18]. The value of Bmax is
1:6� 1028B0 � 1042 G. This is a few orders of magnitude
smaller than the magnetic field that may be in the vicinity
of superconductive cosmic strings [4]. Excited positronium
states may also reach the spectral point P� � 0, but this
occurs for magnetic fields, tens orders of magnitude larger
than (12)—to be found in the same way from (9) with n �
2; 3 . . . .

The ultrarelativistic state P� � 0 has the internal struc-
ture of what was called a ‘‘confined state,’’ belonging to
kinematical domain called ‘‘sector III’’ in [12], i.e., the one
whose wave function behaves as a standing wave combi-
nation of free particles near the lower edge of the normal-
ization box and decreases as exp��ms� at large distances.
The effective ‘‘Bohr radius,’’ i.e., the value of s that pro-
vides the maximum to the wave function (4) makes smax �
0:17 m�1 This is much less than the standard Bohr radius
�e2m��1. The wave function is concentrated within the
limits 0:006 m�1 < s< 1:1 m�1. But the effective region
occupied by the confined state is still much closer to s � 0,
since the probability density of the confined state is the
wave function squared weighted with the measure s�2ds
singular in the origin [12] and is hence concentrated near
the edge of the normalization box s0 ’ 10�25 cm. The
electric fields in the e�e� system at such distances are
about 1043 V=cm. There is no evidence that the standard
quantum theory (SQT) should be valid under such condi-
tions. This fact encourages the use of the theory of
Ref. [12] above that differs from SQT in that it excludes
the short distances beyond the normalization box. [Note,
nevertheless, the reserves [13,17].]

Compare the value (12) with the analogous value, ob-
tained earlier [10] by extrapolating the semirelativistic
result concerning the positronium binding energy in a
18040
magnetic field to extreme relativistic region:
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Such is the magnetic field that makes the binding energy of
the lowest energy state equal to �2m. We see that the
relativistically enhanced attraction has resulted in a dras-
tically lower value of the maximum magnetic field.

Let us estimate possible effects of radiative corrections
[see Ref. [19] for details].

May the vacuum polarization screen the attraction force
between the electron and positron in such a way as to
prevent the positronium collapse? The three photon polar-
ization eigenmodes give the contributions into the photon
propagator [20,21], to be used in the BS equation,

Da�x� � �
1

�2��4
Z exp�ikx�d4k

k2 � �a�k�
; a � 1; 2; 3; (14)

which contain the polarization tensor eigenvalues �a�k� in
the denominator. When calculated [20] in the one-loop
approximation, �1;3 grow with the field as ��=3���
ln�B=B0�, but this remains yet small (� 0:04) for the fields
of the order of (12). The interaction between charged
particles carried by these two photon modes remains prac-
tically the same as it was without the vacuum polarization
and thus continues to support the collapse. However, the
eigenvalue �2, besides the logarithmic growth, also con-
tains a term that increases with B linearly [21,22]:
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and might seemingly screen the interaction carried by the
mode 3 photon. Here k0 is the photon energy, k3 and k? are
its momentum components along and transverse the mag-
netic field, k2 � k2

0 � k2. However, once the electron-
positron separation in the plane perpendicular to the mag-
netic field x? � xe

? � xp
? is restricted to the domain inside

the Larmour radius jx?j��eB��1=2, the integration in (14)
gets essential contribution from large jk?j � �eB�1=2. In
this domain the exponential in (15) suppresses the linearly
growing term in the denominator of D2. This is how the
exponentially strong spatial dispersion opposes the screen-
ing [19].

Among the mass radiative corrections, the so-called ln2

terms are potentially dangerous for the present gap-
shrinking effect, since they yield a competing growth of
the corrected electron mass, essential at the scale of (12).
Substituting the one-loop corrected [23] electron mass ~m,

~m ’ m
�
1�

�
4�

ln2 B
B0

�
; (16)

for m, and LB � �eB�
�1=2 for smax

0 into Eq. (10), we
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estimate that the maximum field increases only by a factor
of �10. The most recent results concerning the mass
correction that take into account the vacuum polarization
diagrams inside the mass operator [24] read that the ln2

terms do not, as a matter of fact, appear at all, thanks to the
presence of the growing term (15).

At B � Bmax the total energy and momentum of a posi-
tronium in the ground state are zero. This state is not
separated from the vacuum by an energy gap, and it is
the one of maximum symmetry in the coordinate and spin
space. Hence, it may be related to the vacuum and describe
its structure.

What happens when the magnetic field exceeds the
maximum value (12)? To answer this question one would
have to solve (a more complicated) BS equation with Pk
nonzero and spacelike. In that case we transit from the
‘‘sector III of confined states’’ to the ‘‘deconfinement
sector IV’’ [12] where solutions are free waves both near
s � 0 and s � 1 and correspond to delocalized states of
mutually free electron and positron—each on its Larmour
orbit—moving along the magnetic field. These are capable
of screening the magnetic field and put a limit to its further
growing. A more detailed discussion of this hypothesis that
traces an analogy with the known problem of a Dirac
electron in the Coulomb field of a supercharged nucleus
[25] and also dwells on the structure of the corresponding
translationally-non-invariant vacuum state is presented in
[14]. For the present, we state that the hypervalue (12) is
such a value of the magnetic field, the exceeding of which
would cause restructuring of the vacuum and demand a
revision of QED.
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