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Thermodynamics Predicts How Confinement Modifies the Dynamics
of the Equilibrium Hard-Sphere Fluid
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We study how confining the equilibrium hard-sphere fluid to restrictive one- and two-dimensional
channels with smooth interacting walls modifies its structure, dynamics, and entropy using molecular
dynamics and transition-matrix Monte Carlo simulations. Although confinement strongly affects local
structuring, the relationships between self-diffusivity, excess entropy, and average fluid density are, to an
excellent approximation, independent of channel width or particle-wall interactions. Thus, thermody-
namics can be used to predict how confinement impacts dynamics.
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The molecular dynamics of fluids confined to small
spaces can differ significantly from the bulk. These differ-
ences have generated interest because confined fluids fea-
ture prominently in both nature and technology. Examples
include dynamics of water near proteins or in concentrated
cellular environments, transport processes across biologi-
cal membranes, and fluid flows encountered in micro- or
nanofluidic devices, to mention a few. Given that a signifi-
cant fraction of the molecules in these systems populate
highly inhomogeneous interfacial environments, it is easy
to appreciate why confinement has nontrivial consequen-
ces for their transport coefficients (e.g., diffusivity and vis-
cosity). Nonetheless, a theoretical framework that can reli-
ably predict these consequences has been slow to develop.

One logical starting point is to ask whether confinement
induced modifications to equilibrium fluid properties, such
as the density, can explain some of the observed differ-
ences in dynamics [1–3]. For instance, if the presence of a
strongly attractive substrate increases the local fluid den-
sity near the fluid-substrate interface, one might naturally
expect a corresponding decrease in particle mobility near
that interface, and vice versa. This type of argument is
physically intuitive, and it has been recently used to ration-
alize why nanoscale materials exhibit glass transition tem-
peratures that are shifted relative to their bulk values [3].
However, it seems doubtful that average structural quanti-
ties alone can account for the wide variety of dynamical
behaviors observed in both simulations and experiments of
confined fluids [4–6]. As a result, it is natural to ask
whether other equilibrium measures, such as the entropy,
can provide additional insights. Unfortunately, it is cur-
rently difficult to obtain the necessary experimental data
for testing these possible connections between thermody-
namics and dynamics for confined fluids. Thus, simulation
results on simple and well-defined model systems are of
great complementary value.

In this Letter, we advance the current understanding of
the relation between thermodynamics and dynamics in
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inhomogeneous systems by addressing the following two
questions. (i) Can either the entropy or the average density
be used to determine the extent to which confinement alters
the diffusivity of a hard-sphere (HS) fluid? (ii) If so, do the
specific interactions between particles and the channel
boundaries significantly impact the result? While the con-
fined HS system represents arguably the most elementary
and well-studied model for inhomogeneous colloidal and
molecular fluids, there is still surprisingly little known
about the possible connections between its basic thermo-
dynamic and kinetic properties. If such connections do
exist and prove to be robust, it suggests that equilibrium
theories for inhomogeneous fluids might generally provide
important information regarding how confinement modi-
fies the transport properties of fluids.

One reason to speculate that entropy could be a reliable
predictor for how confinement affects the diffusivity is its
empirical success for capturing the dynamical behavior of
bulk materials. In particular, computer simulation studies
have demonstrated that the single-component HS and
Lennard-Jones fluids, along with a variety of models for
liquid metals, exhibit, to a very good approximation, a one-
to-one relationship between diffusivity and excess entropy
over a broad range of thermodynamic conditions [7–11].
Excess entropy has also been shown to accurately capture
the behavior of diffusion phenomena in fluid mixtures [12–
14] as well as those in solid-state ionic conductor and
quasicrystalline materials [8].

To explain the origin of the correspondence between
excess entropy and diffusivity in bulk materials, several
researchers have presented independent derivations of ap-
parent scaling laws relating the two quantities. The earliest
that we are aware of is due to Rosenfeld and is motivated
by a variational thermodynamic perturbation theory [7,9].
Dzugutov later used arguments based on kinetic theory to
justify a similar scaling [8], and recently mode-coupling
theory has been employed to establish an approximate
basis for the observed connection [12,13]. Despite the
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effort devoted to justifying these scaling laws theoretically
and testing their validity for bulk materials, to our knowl-
edge the relationship between excess entropy and diffusiv-
ity has never been tested in inhomogeneous fluids, nor has
it been used as a tool to understand how confinement
affects dynamics.

To carry out such a test, we studied how the structure,
thermodynamics, and dynamics of the HS fluid confined to
restrictive two-dimensional (2D) or one-dimensional (1D)
channels (‘‘films’’ or ‘‘pores,’’ respectively) bounded by
smooth, interacting walls differ from those of the bulk
system. We considered five 2D channel sizes that were
effectively macroscopic in the x and y directions and had
particle-center accessible dimensions in the confining z
direction of hz � 15, 10, 7.5, 5, and 2.5, respectively. We
also considered three 1D channel sizes that were effec-
tively macroscopic in the x direction and had particle-
center accessible dimensions in the confining y and z
directions of hy � hz � 7:5� 7:5, 7:5� 5, and 5� 5,
respectively. To simplify notation, we have implicitly non-
dimensionalized lengths in this study by the HS diameter �
and times by the combination �

��������
m�
p

, where m is particle
mass, � � 1=kBT, kB is Boltzmann’s constant, and T is
temperature. Consequently, energies are given per unit
kBT. Position-dependent interactions between particles
and channel walls u��� were calculated using a square-
well potential:

u��� � 1 � < 1=2
� �w 1=2 � � < 1
� 0 � � 1;

(1)

where � represents the shortest distance between a given
particle center and the wall of interest, and �w is the
strength of the effective particle-wall interaction. We con-
sidered five cases for the 2D channels: �w � 1 and �w �
0:5 representing repulsive walls, �w � 0 representing
‘‘hard’’ but neutral walls, and �w � �0:5 and �w � �1
representing attractive walls. Only hard walls were consid-
ered for the three highly restrictive 1D channels.

To monitor kinetic processes in these systems, we per-
formed event-driven molecular dynamics simulations [15]
in the microcanonical ensemble using N � 4500 particles.
Periodic boundary conditions were employed in the D
‘‘free’’ directions (i.e., directions not confined by walls).
The dimensions of the simulation cell in the periodic
directions were set to various values to simulate fluids
with different average number densities that span the stable
equilibrium range, from the dilute gas to the fluid at its
freezing transition. We extracted self-diffusivity D by fit-
ting the long-time (t� 1) behavior of the average mean-
squared displacement to the Einstein relation h�r2

Di �
2DDt, where �r2

D corresponds to the mean-square dis-
placement in the D periodic directions. We also calculated
D for several state points with both smaller (N � 3000)
and larger (N � 6000) particle numbers to verify that
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system size effects in the periodic directions were negli-
gible. For the conditions investigated here, none of the
model systems that we consider exhibit anomalous diffu-
sion [16].

We determined the excess entropy per particle sex using
grand canonical transition-matrix Monte Carlo (GC
TMMC) simulations [17]. Here, sex is defined to be the
difference between the entropy per particle of the fluid and
that of an ideal gas with the same spatial distribution of the
particle number density. GC TMMC simulations require
fixed values for the activity � [18], the particle-center
accessible dimensions fhx; hy; hzg that define the volume
of the simulation cell V � hxhyhz, and the reciprocal
temperature �. We set � � 1, � � 1, and we used the
particle-wall interactions given by Eq. (1). The values of
hy � hz or hz were determined by the confining dimen-
sions of the 1D or 2D channels, respectively, and the
remaining periodic dimension(s) were chosen to satisfy
V � 1000. Indistinguishable results were obtained for sys-
tems of size V � 500.

The key quantities extracted from the GC TMMC simu-
lations were the particle number probability distribution
��N�, the excess configurational energy Uex�N�, and the
N-specific spatial density distribution ��N; r�, each eval-
uated over a range of particle numbers spanning from N �
0 to N � 984. Using arguments from statistical mechanics
[19,20], one can relate these quantities to sex for the
inhomogeneous HS fluid:

sex�N�=kB � N�1fln	��N�=��0�
 � N ln�� lnN!

� N lnN � �Uex�N� �
Z
��N; r�

� ln��N; r�drg: (2)

Given that V � 1000 is fixed, Eq. (2) provides sex��h�
within the range 0 � �h � 0:984, where �h � N=V is
the number density based on the particle-center accessible
volume.

First, we discuss our observations for the utility of sex in
predicting how confinement affects dynamics. Figure 1
shows a parametric plot of D versus �sex for the HS fluid
both in the bulk and confined to the 17 different 2D
channels (hz � 2:5; 5; 10 with �w � 1; 0:5; 0;�0:5;�1
and hz � 7:5; 15 with �w � 0). The data, which encompass
the dynamic behavior of the equilibrium fluid from the
dilute gas to the freezing transition, span three decades in
D. The collapse of the data onto a single master curve
indicates that, to an excellent approximation, the one-to-
one correspondence between D and sex for the bulk fluid
also holds when it is severely confined. The quality of the
collapse is largely independent of either channel width
(including ‘‘particle-scale’’ channels with hz � 2:5) and
the sign or magnitude of the particle-wall interaction. Data
for the HS fluid confined to the 3 rectanglular 1D channels
described above are superimposed in the inset of Fig. 1. As
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FIG. 2 (color online). Self-diffusivity D and excess entropy
per particle sex=kB vs average density � � N=V0 based on the
total system volume V0. Systems shown include the bulk HS
fluid (solid curve) and the HS fluid confined to the 1D and 2D
channels (symbols) discussed in the text. Symbols are identical
to those given in Fig. 1.
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FIG. 1 (color online). Self-diffusivity D vs the negative of
excess entropy per particle �sex=kB for the bulk HS fluid (solid
curve) and for the HS fluid in 2D channels (symbols). The
symbols correspond to hz � 2:5 (circle), 5 (square), 7.5 (plus),
10 (triangle up), and 15 (cross). The color codes are
�w � 1 (blue), 0.5 (cyan), 0 (red), �0:5 (yellow), and
�1 (green). Inset is the same plot with added points for the
1D channels: 5� 5, 7:5� 7:5, and 5� 7:5 shown by red dia-
monds.
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can be seen, they also approximately collapse onto the bulk
relationship between D and sex. In fact, diffusivities for
approximately 50%, 70%, and 90% of the confined state
points shown in Fig. 1 are within 3%, 5%, and 10%,
respectively, of the bulk value at the same excess entropy.

Having established that sex, an equilibrium thermody-
namic property, can be used to predict how various con-
fining environments impactD, it is natural to press forward
and ask whether the same predictive information is con-
tained within an even simpler structural measure: the av-
erage density. Here, one needs to be specific because there
are two different definitions of average density that are
commonly used to characterize inhomogenenous HS fluids
(�h � N=V and � � N=V 0). The former is based on the
particle-center-accessible volume V � hxhyhz, while the
latter is based on the total system volume, i.e., V0 � V for
bulk systems, V0 � hxhy�hz � 1� for 2D channels, and
V 0 � hx�hy � 1��hz � 1� for 1D channels. Schmidt and
Löwen [21] and, later, Zangi and Rice [22] demonstrated
that � is in fact the relevant density for the lateral (i.e.,
periodic) component(s) of the pressure tensor, and thus � is
also a natural independent variable for the free energy of
the system. Below, we investigate whether � is also an
accurate predictor for how confinement effects D.

Figure 2 shows both D and sex as a function of � for the
bulk HS fluid as well as for the HS fluid confined to the 2D
and 1D channels. The collapse of the data, while not
perfect, demonstrates very strong correlations between D,
sex, and � that are nearly independent of the confining
dimensions and the particle-wall interactions. Approxi-
mately 70% and 90% of the diffusivities for the confined
17780
state points shown in Fig. 2 are within 10% and 20%,
respectively, of the bulk value at the same �. This is
another significant result because, unlike sex, � is intui-
tively simple to understand and trivial to determine in
simulations (e.g., it is specified in microcanonical and
canonical simulations). As expected, the systems that ex-
hibit the most noticeable deviation from bulk behavior in
Fig. 2 are the ones for which the fluid is under the most
severe confinement, i.e., channels with dimensions com-
parable to the particle diameter. In these cases, it appears
that specific fluid structuring (e.g., density enhancements
in the channel corners) acts to only slightly reduce the
diffusivity relative to what would be predicted by the
average density �.

Given the approximate collapse of the data in Fig. 2, it is
natural to wonder whether it is simply the particle structur-
ing that is determining the HS dynamics. To test this idea
further, we examine in Fig. 3 the local density profiles ��z�
for a HS fluid confined to 2D channels of width hz � 2:5
but with three different particle-wall interactions: �w �
1 (repulsive), �w � 0 (neutral), and �w � �1 (attractive).
All three systems exhibit the same average density �, and
thus according to Fig. 2, display approximately the sameD
as the bulk. Clearly there are real and pronounced differ-
ences in the local structuring of the three confined fluids,
especially when compared to the uniform bulk material.
These types of differences do generally impact the entropy
and are the main focus of studies of inhomogenenous fluids
by classical density functional theories. However, since the
excess entropy (the quantity which correlates strongly with
D) measures the difference between the system of interest
and an ideal gas with the same spatial particle distribution
[20], one can perhaps appreciate why both sex and D are
fairly insensitive to the details of the density profile.
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FIG. 3 (color online). Density profiles ��z� for HS fluids con-
fined to a 2D channel of width hz � 2:5. Although each system
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Finally, we examine what conclusions regarding density
follow if one instead chooses to plot D versus the alter-
native definition for average density, �h � N=V, based on
the total particle-center-accessible volume V. In particular,
Fig. 4 compares D for the HS fluid confined to 5 different
2D channels with hard walls (�w � 0) as a function of �h.
Unlike when plotting versus �, there is no data collapse in
this case. Thus, one might consider � a more natural
independent variable than �h, not only for thermodynamics
of inhomogeneous fluids [21,22], but also for dynamics.

To conclude, we have probed the structure, entropy, and
diffusivity of the equilibrium HS fluid confined to 2D and
1D channels with a wide range of dimensions and particle-
boundary interactions. Our main finding is that the rela-
tionships between D, sex, and � for the bulk fluid also
remain valid, to within an excellent approximation, when
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FIG. 4 (color online). Self-diffusivity D vs average density
�h � N=V based on the total particle-center-accessible volume
V. Systems shown include the bulk HS fluid (solid curve) and the
HS fluid confined to the 2D channels between hard walls.
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the fluid is confined to particle-scale geometries. Since
statistical mechanical theories can provide accurate esti-
mates for how confinement modifies sex, the robust con-
nection between thermodynamics and dynamics reported
here should have far-reaching implications for the predic-
tion of dynamics in confined systems. We are currently
testing whether similar connections hold (i) for the meta-
stable HS fluid, (ii) for the equilibrium HS fluid in more
general random environments (e.g., quenched media), and
(iii) for fluids with strong interparticle attractions that
significantly affect local structuring.
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