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We consider the coarsening dynamics of multiscale solutions to a dissipative singularly perturbed
partial differential equation which models the evolution of a thermodynamically unstable crystalline
surface. The late-time leading-order behavior of solutions is identified, through the asymptotic expansion
of a maximal-dissipation principle, with a completely faceted surface governed by an intrinsic dynamical
system. The properties of the resulting piecewise-affine dynamic surface predict the scaling law LM �
t1=3, for the growth in time t of a characteristic morphological length scale LM. A novel computational
geometry tool which directly simulates a million-facet piecewise-affine dynamic surface is also intro-
duced. Our computed data are consistent with the dynamic scaling hypothesis, and we report a variety of
associated morphometric scaling functions.
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FIG. 1. Scanning electron microscope image of a faceted
CuO2 surface exhibiting threefold symmetry [25].
The characterization of self-assembled faceted surfaces
is a central theoretical challenge in surface science [1],
since the ensuing morphological statistics (morphometrics)
impact applications in diverse areas. For example, chiral
faceted surfaces, obtained from chemisorption of chiral
molecules, serve as enantiospecific heterogeneous cata-
lysts, which can then select and/or detect biomolecular
enantiomers [2]. Also, the ensemble of faceted nanoscale
crystals (quantum dots) that self-assemble during the dep-
osition of SiGe alloys on Si surfaces [3] possess novel
optoelectronic properties which depend sensitively on the
morphometric structure.

Facets arise for a thermodynamic reason, namely, non-
convexity of the surface energy ��n� with respect to the
surface normal n [4]. The spinodal decomposition of a
thermodynamically unstable orientation into a faceted
surface [1,5] is commonly observed in metals, semicon-
ductors, and ceramics [6–9]; see Fig. 1. Further, upon
annealing, or when subject to some form of growth, these
faceted morphologies undergo a self-similar coarsening.
Various power-law scalings LM � tn, for the growth in
time t of the characteristic morphological length scale LM

[10–13], as well as scale-invariant surface structure factors
[11] have been reported.

Multiscale continuum models governing the entire pro-
cess of spinodal decomposition through facet coarsening
have been derived from first principles, subject to a small
facet-slope approximation [14,15]. The coarsening dynam-
ics of such models has been examined through direct
simulation [15–18], and power-law scalings consistent
with experimental findings were surmised. However, theo-
retical predictions for the scaling exponent n have re-
mained in a heuristic state, while direct simulations to
probe the morphometric structure were previously limited
by the multiscale nature of the problem.

In this Letter, we theoretically characterize the leading-
order dynamics of a dissipative multiscale continuum
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model for coarsening faceted crystal surfaces. The theory
identifies a dynamical system governing the leading-order
purely faceted surface, by utilizing a novel asymptotic
maximal-dissipation principle [19]. The properties of the
resulting piecewise-affine dynamic surface (PADS) imply
the scaling law LM � t

1=3, which confirms earlier predic-
tions [16,17]. We also introduce a unique computational
geometry tool, which directly simulates a million-facet
PADS by explicitly treating all the associated topological
and critical events that arise as the surface coarsens. Our
computed data reveals dynamic scaling (statistical self-
similarity) at all levels of interrogation, and we report
here on the scale-invariant distributions for n-sided facets
and the relative facet area.

The free energy of a faceted crystalline surface z �
h�x; y� has been modeled, in the small-slope limit, by the
projected-area (dA � dxdy) integral

E�h� :�
Z �

W�rh� �
1

2
"2��h�2

�
dA; (1)

W�rh� is a nonconvex function of the slope, rh � hxi�
hyj � pi� qj, while 0< "	 1 is a dimensionless con-
3-1 © 2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.96.176103


PRL 96, 176103 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
5 MAY 2006
stant, and � � �@2=@x2� � �@2=@y2�. Furthermore,
attachment-kinetics limited crystal growth is modeled
[14,15] by the dissipative evolution equation @h

@t � �
�E
�h ,

where �E
�h denotes the variational derivative (L2 gradient) of

E; i.e.,
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We consider here the trigonally symmetric potential

W�p; q� :� �1
6�q

2 � p2� � 1
9�q

3 � 3qp2� � 1
6�q

2 � p2�2;

which is minimized by the gradients m � pi� qj 2 G,
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Numerical simulations of (2) reveal that solutions dis-
play two disparate length scales at late times [16]; see
Fig. 2. The outer scale arises from the O�1�-size domains
wherein the gradient rh is approximately equal to a par-
ticular m 2 G. At the same time, theO�"�-width boundary
layer (diffuse edge), residing between adjacent outer-scale
domains and wherein an interpolation between two differ-
ent m 2 G occurs, provides the inner scale. The outer-
scale structure of the solution surface z � h is therefore
approximated, to leading order, by the piecewise-affine
surface z �H : i.e.,

h �H �O�"�; where rH 2 G: (4)

Further, the projected-edge set EH , obtained by projecting
the edges of the surface z �H onto the plane z � 0,
outlines the diffuse-edge network associated with h.

The free energy E�h� concentrates, as a result of (4), into
an O�"�-width boundary layer centered on EH . More
precisely, the inner-scale structure of rh around EH in-
duces an effective line-energy density �" on EH , where

� :�
R ��

3
p
=2

�
��
3
p
=2

��������������������������
W�p;�1=2�

p
dp �

���
3
p
=2 [16]. However,

since W�m� � 0 and @W
@p �m� � 0 � @W

@q �m� for all m 2
G, an examination of the Taylor expansion of E�h� reveals
an outer-scale contribution of at most O�"2�. We therefore
FIG. 2 (color online). Representative late-time surface profile
z � h�x; y; t� from a numerical simulation of (2), alongside a
gray-scaled distribution of the gradient magnitude m �
jrh�x; y�j; m � 1 (dark), m � 1=2 (light).
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obtain the asymptotic expansion

E�h� � P �H ��"�O�"2�; (5)

where P �H � denotes the total length (perimeter) of EH .
Furthermore, the slow time scale � :� �"t on which solu-
tions of (2) evolve at late times is naturally identified:

@h
@�
� �

1

�"
�E
�h

: (6)

The gradient constraint rH 2 G greatly simplifies the
kinematics of the faceted surface z �H �x; y; ��, since it
implies each facet may only move with a fixed orientation;
we presume nucleation of new facets is precluded. It
follows that the sole degree of freedom of the ith facet, i 2
I, is a displacement in height, parametrized through a local
height coordinate H i: Edges and triple junctions of the
surface offer no constraint, assuming no topology change,
with their positions following the locus of intersection of
the two and three intersecting facets which comprise them.
Hence, the kinematics of z �H are captured by specify-
ing the instantaneous vertical velocity V i � dH i=d� of
each facet. Further, from (4) we deduce the asymptotic
form of the solution velocity h�:

@h
@�
�
X
i2I

dH i

d�
�F i
�O�"�; (7)

where the set F i coincides with the projection of the ith
facet onto the plane z � 0, while �F i

denotes the charac-
teristic function which takes the values 1 and 0 on and off
the set F i, respectively.

To identify the dynamical system governing the leading-
order purely faceted surface z �H requires a method
which connects the outer-scale kinematics of h, namely,
(7), with the inner-scale edge network on which the energy
essentially resides, as expressed by (5). As in Ref. [19],
the asymptotic expansion in " of an Onsager-Raleigh-type
principle of maximal dissipation [20] will provide the
requisite link, as we shall now demonstrate.

First, the dissipation of a virtual velocity v�x; y� is, by
definition,

R
v2dA. Now a simple computation shows that

the (scaled) power of a solution to (6), namely,

1

�"
d
d�
E�h� �

Z 1

�"
�E
�h

@h
@�
dA; (8)

balances the dissipation of h� according toZ 1

�"
�E
�h

@h
@�
dA�

Z �@h
@�

�
2
dA � 0: (9)

Replacing h� in (9) by v, we identify the class C" of power-
dissipation compatible virtual velocities; i.e.,

C " :�
�
v:

Z
v2dA�

Z 1

�"
�E
�h

vdA � 0
�
: (10)

Further, a direct calculation shows that for any v 2 C"
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FIG. 3 (color). Schematics of two possible topological or
critical events that may arise during the evolution of a
piecewise-affine H .

(a)

(b)

FIG. 4 (color). (a) Early and (b) late-time surface morpholo-
gies from a PAGE simulation of a PADS governed by (18).
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FIG. 5 (color). (a) Scale-invariant histogram of relative fre-
quency of 2n-sided facets. (b) Scale-invariant distribution of
dimensionless facet areas ��A=hAi� (dashed line) and its decom-
position into 2n-sided facets; n � 2 (green), n � 3 (dark blue),
n � 4 (red), n � 5 (yellow), and n � 6 (light blue).
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Z
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Z � 1

�"
�E
�h

�
2
dA�

Z �
v�

1

�"
�E
�h

�
2
dA:

Hence, h� maximizes the dissipation among all virtual
velocities v 2 C". Indeed, one may readily show that the
principle of maximal dissipation, which states

@h
@�
2 C" (11a)

and
Z �@h

@�

�
2
dA � max

v2C"

Z
v2dA; (11b)

is both a necessary and sufficient condition for (6).
We now develop the asymptotic expansion (11) with

respect to ". We begin by observing that (7) impliesZ �@h
@�

�
2
dA �

X
i2I

Ai

�
dH i

d�

�
2
�O�"�; (12)

where Ai denotes the area of F i. Also, recalling (8) and
then applying (5), one concludes
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Utilizing both (12) and (13), we may expand (9) or, equiv-
alently, (11a) to deduce, upon equating O�1� terms,

X
i2I

Ai

�
dH i

d�

�
2
�
X
i2I

@P

@H i

dH i

d�
� 0: (14)

Since (7) also implies that any virtual velocity of h takes
the asymptotic form v �

P
i2I�F i

V i �O�"�, we simi-
larly find that v 2 C" precisely when V :� �V i�i2I 2
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C0, where

C 0 :�
�
V :

X
i2I

AiV
2
i �

X
i2I

@P

@H i
V i � 0

�
: (15)

From this fact, we deduce the asymptotic expansion

max
v2C"

Z
v2dA � max

V2C0

X
i2I

AiV
2
i �O�"�: (16)

Finally, using both (12) and (16) in (11b) and equating
O�1� terms, and also noting (14) and (15), we deduce the
asymptotic form of (11), namely,�

dH i

d�

�
i2I
2 C0 (17a)
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Hence, �dH i=d��i2I maximizes the asymptotic dissipa-
tion

P
i2IAiV

2
i among all virtual velocities V 2 C0.

Furthermore, it is readily shown that (17) is equivalent to

dH i

d�
� �

1

Ai

@P

@H i
; (18)

a dynamical system which intrinsically and uniquely de-
termines the evolution of the faceted surface z �H .

The piecewise-affine dynamic surface (PADS) governed
by (18) preserves the dissipative structure of the underlying
model Eq. (6); the ith facet is acted on by the driving force
�@P=@H i and possesses an effective mobility inversely
proportional its projected area. In particular, the perimeter
of the projected-edge set P �H � must decrease as the
surface evolves. Furthermore, discontinuous decreases in
perimeter may arise during topological or critical events
such as those represented in Fig. 3.

The dynamic scaling hypothesis asserts that the spatial
surface statistics of a coarsening PADS are temporally
invariant upon rescaling space by a suitable characteristic
morphological length scale LM���. Assuming such statis-
tical self-similarity, the invariance of (18) under the spa-
tiotemporal scaling L! �L and �! �3� implies the
power-law scaling LM��� � �

1=3.
We have developed a novel computational geometry

tool, the piecewise-affine-geometry evolver (PAGE), to
simulate a PADS possessing a statistically significant num-
ber of facets; see Fig. 4. It is based on the planar-graph
structure (facet, edge, or vertex) of a piecewise-affine
surface. Further, it treats all the topological and critical
events that emerge during coarsening by a theoretically
based graph-rewriting algorithm; here the topological
complexity exceeds that of the previously studied 2D
coarsening networks associated with foams and polycrys-
tals [21]. We present in Fig. 5 a brief sample of our
computed statistics, derived from averaging the data from
20 independent PAGE simulations of a PADS starting with
25 000 facets. After an initial transient, associated with but
insensitive to the initial data, we find the scaling law�����������
hAii

p
� 1:75�0:33;

�����������
hAii

p
denotes the square root of the

average projected facet area. This is not only consistent
with our theoretically predicted scaling exponent n � 1=3
but also reflects the fine details of the coarsening pathway
through the experimentally important prefactor 1.75 [22].
In Fig. 5, we report on some scale-invariant morphometric
measures which further support the dynamic scaling
hypothesis.

In conclusion, a novel asymptotic expansion of a gener-
alized Onsager-Raleigh maximal-dissipation principle
[19], in conjunction with a unique computational geometry
tool—PAGE—provide a comprehensive morphometric
characterization of multiscale solutions to a continuum
model for thermodynamically unstable crystalline sur-
faces. The theoretical expansion method, which itself ap-
17610
plies to any singularly perturbed gradient descent [19],
identifies the late-time large-scale behavior of solutions
with a completely faceted surface governed by an intrinsic
dynamical system, a so-called PADS. The scaling proper-
ties of this approximating PADS predict a coarsening law
which is consistent with direct numerical simulations of
the original model. Furthermore, data taken from PAGE
simulations of a million-facet PADS confirm statistical
self-similarity of the ensuing morphology, and we report
on the observed scale-invariant distributions for 2n-sided
facets and the relative facet area. Comparisons of our fine-
scale morphometric predictions with detailed data from
in situ spectroscopy and microscopy may serve as a useful
and robust model-validation probe. Last, lying at the inter-
section between nonequilibrium statistical mechanics and
complex networks [23], this coarsening PADS, and others
like it [24], are complex systems whose emergent behavior
warrants further study.
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