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Coherent Structure Formation in Turbulent Thermal Superfluids
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By means of numerical calculations, we show that in turbulent thermal superfluids the normal fluid
induces coherent bundles of quantized line vortices in the superfluid. These filamentary structures are
formed in between the normal fluid vortices, acquiring eventually comparable circulation. They are self-
stretched and evolve according to self-regulating dynamics. Their spectrum mimics the normal fluid
spectrum with the mutual friction force exciting the large scales and damping the small scales. Strongly
interacting triads of them merge sporadically into stronger, braided vortex filaments, inducing strong
fluctuations in the system’s energetics. A theoretical account of the system’s statistical mechanics is
proposed.
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In turbulent thermal superfluids [1,2], recirculating su-
perfluid motions induced by quantized vortices exchange
(via mutual friction forces) energy and momentum with
normal fluid eddies. At present, even the most elementary
issues about the physics of such flows have not been
resolved in a definite way. Among these issues one could
mention scaling laws in the energy spectra of both fluids,
the energetics of the mutual friction force, as well as the
structure of superfluid vorticity. In this Letter, we calculate
how normal turbulent eddies induce turbulence in the
superfluid by causing a single initial superfluid vortex
ring to grow and develop into a complex tangle. We
show that this process, referred to as the thermal superfluid
dynamo, is an appropriate context for a satisfactory reso-
lution of the aforementioned issues. Mathematical models
of thermal superfluids require separate dynamical equa-
tions for the superfluid and the normal fluid. Lately, a
number of studies [3,4] have suggested that homogeneous
isotropic turbulent normal flows are characterized by fila-
mentary excitations of the incoherent vorticity background
state fluctuations. Because of their near singular nature,
these coherent vorticity structures carry most of the energy
and enstrophy of the flow and are conjectured to corre-
spond to the inertial range of turbulence and determine the
Kolmogorov spectrum [5,6]. Based on these studies, a
model was developed [6–10] that describes normal fluid
turbulence in terms of coherent structures (vortices) and
compares well with Navier-Stokes phenomenology since it
reproduces, among other, the Kolmogorov scalings of the
energy spectrum and the third order longitudinal structure
function. By adopting this model in the present study, we
describe both the normal fluid and the superfluid as vortex
dynamical systems.

The latter are fully determined by the evolution of the
three dimensional representation Xf ��f; t� of a vortex
tangle Lf, where �f is the arclength parametrization along
the vortex loops, t is time, and the index f is f � n for
normal fluids and f � s for superfluids. The evolution
equation for Xs��s; t� is given by [11]
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where Vn is the normal fluid velocity and the superfluid
velocity Vs is given by the Biot-Savart integral
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Here, X0s � @Xs=@�s is the unit tangent vector (indicating
the direction of the singular superfluid vorticity), � is the
quantum of circulation, and h, h�, h�� are known dimen-
sionless mutual friction parameters.

The model for the normal fluid vortices is described in
detail in [6]:
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where Vn is the Biot-Savart velocity
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where !n is the normal fluid vorticity vector. The em-
ployed !n formula [6] takes into account the finite core of
the filaments, as well as variations of the latter along the
vortices (thus capturing the physics of vortex stretching).
The viscous effects are handled by the core-spreading
scheme [6]. When two normal fluid filaments approach
closer than a fraction of their corresponding core radii, they
reconnect according to the method of [12]. The calcula-
tions are done for helium II and T � 1:3 K thus � �
9:97� 10�4 cm2=s, h � 0:97824, h� � 0:04093, h�� �
0:02175 and the viscosity of the normal fluid is �n �
2:3303� 10�3 cm2=s. The normal fluid Reynolds number
Re� � �=�n (where � � 932:12� 10�4 cm2=s is the cir-
culation of the normal fluid vortices) is Re� � 40. One
notes that since �=� � 93:492, one normal fluid vortex is
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as strong as approximately 100 aligned superfluid vortices
put together.

Because of algorithmic and computational complexity,
we cannot compute here the fully consistent dynamics of
the combined vortex systems. Instead, we solve a lesser
problem that is defined as follows [6]: We choose a cubic
computational domain of size lb � 0:1 cm. Then, we place
in it a number of normal vortex loops set at random
locations and orientations with circulation � defined
above. The loops evolve according to Eq. (3) and undergo
a large number of reconnections, quickly forming a time-
dependent turbulent tangle. By checking the statistics of
the vortex system, we determine when a statistically iso-
tropic and homogeneous turbulence state with the appro-
priate Kolmogorov statistics is achieved [6]. Such a state is
shown in Fig. 1 (top). For clarity, this figure shows only a
fraction (0.13) of the actual tube radii. We then keep this
normal turbulent flow constant in time while we investigate
its effect, via mutual friction, on a single initial superfluid
vortex ring. It will be shown that this lesser problem could
FIG. 1 (color online). Static normal fluid vortex configura-
tion (top) and typical superfluid vortex tangle (bottom, t �
1:472 s).
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be consistently considered to model the effects of the
largest, more energetic, normal fluid eddies on the super-
fluid vortices.

Both vortex systems satisfy periodic boundary condi-
tions. The mesh size along the superfluid vortices is �� �
lb=48 � 0:1=48 � 2:08� 10�3 cm and its associate wave
number is k�� � 480 cm�1. As the vortices grow during
their evolution, more discretization points are added along
their contours, keeping the resolution constant and equal to
��. Because of this, the number of mesh points grows from
the initial value N � 75 to the final value N � 90 000. The
time step is chosen so that the fastest Kelvin waves allowed
by the spatial discretization are well resolved. This require-
ment determines �t � 3:137� 10�4 s. In analogy with
magnetohydrodynamics (MHD), one can call this problem
the kinematic superfluid dynamo since it is expected that
the initial seed superfluid vorticity and energy will be
amplified by the normal fluid flow. Indeed, the initial
superfluid ring is distorted and its length grows until close
to t � 1 s, after 3200 time steps, the first obvious signs of
superfluid line vortex conglomeration into bundles appear.
Note that when this time is matched with an appropriate
normal vortex motion time � � ��=R2��1, it gives a cor-
responding curvature radius R � 0:3 cm. This radius is
comparable with the size of the computational box.
Definitely, in a typical turbulent normal vortex system
there would be vortices with larger curvature radii [8].
The less curved these vortices are, the more plausibly could
be approximated as ‘‘static’’ during an interval of 1 s.
Moreover, the velocity fields induced by them correspond
to large scale eddy motions and therefore, since the spec-
trum scales like k�5=3, to higher energies than the energies
of the velocity fields induced by the highly curved and
faster evolving vortices. Consequently, in agreement with
the aforementioned interpretation of the present model,
their more energetic velocity fields could be conjectured
to organize the superfluid vortices along the lines depicted
here. A typical superfluid tangle configuration is shown in
Fig. 1 (bottom). At this time, t � 1:472 s, the superfluid
vortex length L which initially was L0 � 0:15 cm has
grown up to Lf � 153:951 cm. The intervortex spacing
is � � 2:548� 10�3 cm and the corresponding wave
number is k� � 392. Evidently, linear coherent structures
of quantized vortices thread the whole system. We have
verified that the most prominent of these filaments are
bundles of 35–40 lines of aligned vorticity, thus their
circulation is comparable to that of the normal vortices.

Figure 2 (middle) shows the average values of the re-
spective contributions of Biot-Savart law and mutual fric-
tion force to superfluid vortex dynamics, as well as the
evolution of the superfluid kinetic energy Es. It is observed
that initially the mutual friction force outweighs, on aver-
age, the Biot-Savart law. However, at vortex bundle for-
mation time, t � 1 s, the two effects are approximately
balanced and, subsequently, the Biot-Savart contribution
1-2
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FIG. 2 (color online). Left: superfluid energy spectrum at t � 1:4178 s (circled line), t � 1:4209 s (starred line), and normal fluid
energy spectrum (plain line); due to the difference in the two energies, the comparison of their scalings was made possible by
multiplying the superfluid spectra by a factor 35. Middle: average magnitudes of contributions to the superfluid vortex dynamics
(hjVBSji � hjhVsji, hjVMFji� hjh�X0s��Vn�Vs�ji�hjh��X0s��X0s�Vn�ji). Right: evolution of the superfluid kinetic energy Es.
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dominates. Therefore, structure formation is the outcome
of dominant mutual friction action during the initial phases
of the dynamo. This explains the absence of vortex struc-
tures in numerical calculations of pure superfluid vortex
tangles (T ! 0 K). The dynamics of superfluid energy Es
are shown in Fig. 2 (right). A gradual reduction in the
growth rate of superfluid energy is observed. A similar
phenomenon occurs in the evolution of the superfluid
vortex length. This can be understood by noticing that as
the superfluid bundles grow stronger, they develop self-
regulating dynamics which decorrelate vortex motion from
mutual friction action. Although mutual friction remains
the net contributor to the growth of superfluid energy, its
efficiency ought to decline.

In order to elaborate a theory for the energetics of the
system, we have calculated first the enstrophy production
rate h�i � h

P3
i�1 �icos2�X0s;�i�i [8,13]. Since h�i �

68:129 s�1, it follows that the superfluid vortex bundles
are, on average, self-stretched and they could develop an
inertial range with a Kolmogorov scaling and accompany-
ing energy cascade from large eddies to small. This is
indeed the case, as indicated by the circled line spectrum
of Fig. 2 (left) which refers to t � 1:4178 s and is repre-
sentative of what is usually observed at other times. Since
the observed cutoff in this spectrum is much smaller than
k��, the numerical resolution along the vortices is adequate
for the present flow. Taking into account that the dynamics
of the superfluid bundles are dominated by the inviscid
Biot-Savart interactions, the observed spectrum seems at
first paradoxical. This is because the Kolmogorov scaling
of normal fluids is the effect of viscous stress induced small
scale damping that keeps the system energetics constantly
out of statistical equilibrium. In contrast, although (trun-
cated) inviscid Euler dynamical systems do exhibit initially
the formation of a Kolmogorov like inertial range, such
systems are eventually thermalized. In particular, starting
from the small scales, they develop the scaling Es�k� / k2

predicted by equilibrium statistical mechanics [14]. Why
then is the superfluid spectrum similar to a normal fluid
spectrum?
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In order to answer this question we need to understand
the energetics of the mutual friction force. The key obser-
vation is that around t � 1:42 s the superfluid energy
decreases (Fig. 2, right). That is, for a particular interval
of time, mutual friction work is a net energy sink for the
superfluid system. Figure 2 (left) shows the superfluid
energy spectrum (starred line, t � 1:4209 s), just before
the observed superfluid energy reduction. The scaling
Es�k� / k2 is observed at small scales. We have verified
that as Es decreases at subsequent times, the Es�k� / k2

scaling disappears and the spectrum returns to its typical,
normal-fluid-like shape with the high k cutoff. This obser-
vation indicates that the mutual friction extracts energy
from the smallest superfluid scales and transfers it to the
normal fluid.

With this crucial information, we can explain the en-
ergetics of the flow: We need to discriminate between the
inertial range, large scale energy E<s , and the small scale
energy E>s . E<s increases due to mutual friction input
rate Q and decreases due to the superfluid vortex stretch-
ing induced energy flux F from small to large wave num-
bers. Since E<s increases due to the dynamo effect, we
must have that jQj � jFj> 0. On the other hand, E>s
increases because of energy flux F cascading from the
large scales and decreases because of mutual friction in-
duced damping rate D. Since E>s increases due to the
dynamo effect, it must be jFj � jDj> 0, so typically
jQj> jFj> jDj. However, due to the statistical nature
of the system’s energetics, a fluctuation during which
jFj 	 jDj might temporarily be induced by rare strong
bundle stretching events. The strong vortex interactions
during the merging of three superfluid bundles into a vor-
tex braid (Fig. 3, to be discussed later), is a particular
example of such an event. Such a fluctuation takes place
at times before t � 1:4209 s leading to energy accumu-
lation at small scales and subsequent equipartition. These
explain the observed partially thermalized superfluid
spectrum at t � 1:42 s (Fig. 2, left). Subsequently, be-
cause of their increased energy, the smallest superfluid
eddies start giving energy to the normal fluid via mutual
1-3



FIG. 3 (color online). Amalgamation of three bundles of su-
perfluid line vortices into a new vortex tube of intensified
circulation. In the top figure (left side, t � 1:3425 s), two
strongly interacting superfluid bundles of aligned vorticity are
seen rotating around each other. In the process, they are joined
by a third bundle and merge together (bottom, t � 1:4429 s)
forming a vortex braid. Since the amalgamation process is not
complete, the newly formed tube trifurcates at some point along
its contour.
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friction action and the normal-fluid-like energy spectrum
shape is restored.

Computational complexity does not allow us to continue
the calculation for much longer times. Nevertheless, the
available results suggest that Es might slowly approach
saturation. Indeed, due to the decorrelation between mutual
friction action and superfluid vortex dynamics, it is con-
ceivable that (given adequate time) the net energy flow
between the two systems could become statistically zero.
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The associated saturation of the kinematic dynamo would
only require that hjQji � hjFji � hjDji and not necessarily
also that Es � En. This is a genuinely nonlinear effect,
since in magnetohydrodynamics, the linearity of the equa-
tion governing the amplified magnetic field does not allow
a kinematic MHD dynamo to saturate.

Figure 3 shows the merging of a vortex bundle triad into
a new braided vortex of intensified circulation that we
alluded before. In connection with the preceding spectrum
analysis, it is important to note that the bundle merging
process terminates concurrently with the start of the super-
fluid energy reduction discussed previously (Fig. 2). Since,
due to the weakness of mutual friction, such processes are
mainly driven by Biot-Savart interactions, they could also
be essential for coherent structure formation in normal
fluid turbulence.

Calculations were also attempted for Re� � 104 and
T � 1:3 K, as well as Re� � 40 and T � 2:171 K with
similar conclusions.
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