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Nontrapping Arrest of Langmuir Wave Damping near the Threshold Amplitude
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Evolution of a Langmuir wave is studied numerically for finite amplitudes slightly above the threshold
which separates damping from nondamping cases. Arrest of linear damping is found to be a second-order
effect due to ballistic evolution of perturbations, resonant power transfer between field and particles, and
organization of phase space into a positive slope for the average distribution function f,, around the
resonant wave phase speed v . Near the threshold trapping in the wave potential does not arrest damping

or saturate the subsequent growth phase.
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Plasma theory has usually been pursued independently
of the theory of critical phenomena. Recently, however,
it has been revealed that evolution of a monochromatic
electrostatic Langmuir wave of finite amplitude in a
Maxwellian plasma is a threshold phenomenon. Speci-
fically, after a short initial period of approximately linear
damping according to Landau’s [1] classic theory, a wave
with initial amplitude A, greater than a threshold Aj stops
decreasing and starts to grow approximately exponentially
before undergoing irregular oscillations in amplitude [2,3]
(Fig. 1). Both the amplitudes and times at which the wave
first ceases to damp and grow (labeled “‘arrest” and ‘‘satu-
ration’’) are power-law functions of the difference (Aq —
A}) [3], thus casting the process into a new universality
class of dynamic critical phenomena.

For a collisionless plasma the distribution function
(DF) is usually not Gaussian, and because of the long-
range character of the Coulomb force, these systems are
outside the domain of equilibrium thermodynamics.
Unlike the theory of critical phenomena in thermodynam-
ics, where only spatial correlations are considered through
the order parameter ¢(x) and the partition function Z =
[Dep(x)e (41 [4], threshold physics in collisionless sys-
tems involves correlations in velocity space [5]. Therefore
these correlations, due to resonant energy exchange be-
tween particles and waves, are a new paradigm for critical
phenomena potentially applicable in a vast class of sys-
tems, e.g., coupled phase oscillators which show Landau
damping or equivalent Josephson-junction arrays [6].

Crawford’s pioneering analysis [7] reveals the striking
difference between thermodynamic and plasma situations
due to this physics: the resonance between particles and
waves at the phase velocity vy, = w,./k turns the thermo-
dynamic exponent 8 = 1/2 [4] into the “trapping scaling”’
exponent B = 2, which describes saturation of the weak
bump-on-tail [8] and gravitational instabilities [5]. In the
frameworks of linear and quasilinear theory [9], arrest of
the linear damping of plasma waves (as well as saturation
of the growth) might be explained in terms of flattening of
the DF at v, thus bringing the damping (growth) rate
yL ~ (9f/9v)y=y, of a kinetic instability to zero.
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Trapping of electrons in a monochromatic wave’s elec-
tric potential is often suggested as a nonlinear mechanism
to stop the initial exponential damping phase and to satu-
rate the wave’s growth [10,11]. Trapping and its associated
Bernstein-Greene-Kruskal (BGK) modes [12] also imply a
certain shape of the DF plus trapped and untrapped orbits
in velocity phase space. However, it is controversial
whether trapping is relevant to the damping threshold.
For instance, one analysis [13] assumes ergodicity of
trapped particles in a single-wave potential and predicts
the threshold initial electric field amplitude E through the
critical ratio g, = |yL|/ @, = 0.06 of the absolute Landau
damping rate |y;| to the trapping frequency w, =
(kEge/m,)'/?. In contrast, full Vlasov-Poisson (VP) simu-
lations for a Maxwellian plasma yield g, = 0.85 from the
asymptotic evolution [14] and ¢, = 1.0 from the initial
evolution [3], with constants of proportionality slightly
different from unity for other thermal plasmas [3].

Other conflicting evidence exists on the role of trap-
ping. Consider the critical exponents 7., Bmin> Tsat» and
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FIG. 1 (color online). (a) Two-component electron (blue or
gray shading) and ion (red or light gray line) m =1 field
evolution for m],/mg = 1836. (b) Electric field envelope A,
for mode m = 1 for immobile ions (black solid line) and mobile
ions A4p) (blue or gray dashed line), and the ratio of the
simulated frequency to its analytic prediction, w*/w (right
axis, black dash-dotted line). Diamonds mark the arrest time
tmin and saturation time 7.
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Bsa for the power-law functions of (A, — Aj) obeyed by,
respectively, the time t,,;, and amplitude A, at which the
initial damping phase finishes, as well as the time 7, and
amplitude A, at which the first exponential growth phase
saturates [3]: e.g., fin & (Ag — AJ) ™ and Ay, < (A9 —
A})Bmin. First, the temporal exponents Ty, = 0.901 *
0.008 and 7., = 1.039 = 0.011 are measurably different
from each other and the value 0.5 expected from the
definition of w,. Second, the field exponents S, =
1.88 £ 0.07 and B, = 2.72 = 0.09 are remarkably dif-
ferent from each other and the value B, = 1 expected for
trapping [11]. These points argue against trapping causing
either of the arrest and saturation phenomena. Third, cal-
culations with Ay >> A} lead to 7 and B exponents closer
to 0.6 and 1.3, respectively, and the oscillation spectrum
has clear peaks near w, suggesting that trapping plays a
role well above threshold [3].

In this Letter we first simulate one-dimensional (1D) VP
two-component plasma with initially Maxwellian distribu-
tions for electrons and ions and demonstrate that ion mo-
bility does not affect the threshold phenomenon for
Langmuir wave damping seen in VP simulations without
ions. Then, using one-component electron VP simulations,
we demonstrate that the DF phase portrait when the wave
first ceases to damp is much simpler than a BGK equilib-
rium [12] and shows no evidence for trapping. Instead, we
demonstrate that the initial DF resonantly evolves a posi-
tive slope in velocity space that stops the initial Landau
damping and supports the subsequent exponential growth.
We also demonstrate that the DFs are different at the arrest
and saturation times and are not consistent with trapping.

To clarify the importance of ion mobility, we employ
first the two-component 1D VP model, normalizing to
electron quantities:

Ifa/ 0t +vof,/0x — pEdf,/dv =0, (1

+o00
0E/dx = f (fp = fe)dv. 2
Here a = e, p, m, is the particle mass, f, is the compo-
nent’s DF, u, =1, u, = —m,/m,, and E(x, 1) is the
electric field. The boundary conditions are assumed to be
periodic. The initial electron distribution is

fo(x,v,0) = 1/327v, exp(—v2/202 )1 + Ay cos(k,,x)],

where vy,, is the Maxwellian thermal speed for electrons,
A, the initial electric amplitude, k,, = 277m/L is the wave
number of the mode m, and L is the length of the system.
The ions are initially uniform and Maxwellian distributed
in velocity space with 7, = T,.

The simulations use m = 1, vy, = 0.4, Debye length
Ap. = 0.31, and L = 27 = 20.18Ap,. They have N, =
256 cells in the x direction both for electrons and ions,
and N,, =20000 and N,; = 2000 cells in speed for
electrons and ions, respectively, within the domains
[—10vy,, 10vy,]. The Cheng-Knorr method [15] was

used to solve Egs. (1) and (2) with double precision.
System invariants I3, = [ fadxdv are conserved better
than AL, /13,(0) < 107° for electrons, and Al;,/15,(0) <
10~? for ions.

Figure 1 shows the evolution of the mode m = 1 for
initial amplitude A, = 0.012, A = (8.51 * 0.06) X 1073,
and m,/m, = 1836, ny,,(t) = [®y fi.,(v, )dv. This
type of evolution is observed experimentally [16]. The
existence of significant ion motion in Fig. 1(a) seems, at
first glance, to suggest that the evolution is seriously af-
fected by ion mobility. However, the envelope field ampli-
tude of the electron oscillations is identical to within 1%
for mobile and immobile ions [Fig. 1(b)]. Quantitatively,
the initial damping phase in Fig. 1 stops at time ¢, =
441w,," and amplitude Ay, = 1.64 X 107>, and is then
followed by almost exponential growth which saturates at
fr = 1365w, and Ag, = 2.42 X 107*. These quantities
are identical to those calculated in the electron VP simu-
lations of Ref. [3], where m = 4 was assumed for the
perturbation and vy, = 0.1 for the electron thermal speed.
This is expected because kAp,, the wave frequency w, and
v are the same for the two simulations.

Analytic theory predicts that @ = 1.2851w., but the
simulated value * = 12705+ 9 X 107* is slightly
shifted from w due to the large value of A, and varies
slightly with time [Fig. 1(b)]. The linear damping rate is
yL = —0.0661w,,. For smaller Ag = 107 both w* and
¥f, match the standard Landau theory [1] very well (not
shown), with {|[(0* — w)/@|, |(¥f = yo)/yLI}<2X107%.

These two-component VP results demonstrate that the
threshold phenomenon for Langmuir wave damping is ro-
bust against ion effects: max[|A (1) — A4 ,)(DI/A ()] <
1072 on the interval 0 =<t <= ty. Accordingly, one-
component simulations, with ions acting as a neutralizing
background, are used below.

The DF near the phase velocity v, = w*/k; = 1.271 at
t = tpin and f = g, is shown in Fig. 2 and reveals drastic
discrepancies between the evolution which ends with arrest
of damping at ¢t = t,,,;, and the subsequent evolution until
the growth saturates at t = 7. At t = t,,;, the phase space
portrait reveals no signs of particle trapping—only fila-
mentation due to phase mixing (Fig. 2, upper panel).
Moreover, instead of a stationary state this distribution
supports approximately linear (meaning exponential)
growth on the interval 7.;, <17 <ty as Fig. 1(b) shows.
Crucially, the DF at ¢, does not consist of the closed orbits
(or whorls in velocity-position space) expected for trap-
ping. Instead, the orbits are still open, although they clearly
indicate progress towards trapping. Trapping is therefore
responsible for neither the arrest of damping nor the satu-
ration of the growth phase.

In the linear theory developed by Landau [1] growth is
due to a positive slope at the phase velocity of the wave,
|lu| = v,, in the DF averaged over the x coordinate,
folv, 1) = (1/L) [§ f(x, v, )dx. Figure 3 shows fo(v, r =
fmin). Instead of the flattening of f, near the resonant
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FIG. 2. DF when (upper panel) ¢ = t,,;, and damping stops and
(lower panel) ¢t = t, and growth saturates.

velocities v = v, predicted by quasilinear theory [9],
fo(v, tmin) acquires a positive slope in a small vicinity of
vy, and therefore can support (approximately) linear
growth after t = ¢,;, as Fig. 1(b) shows.

Contrary to the situation near ¢ = t,;;, when damping
ceases and the physics looks quite smooth and regular, f,
becomes quite irregular near the time ¢ = ¢, when growth
saturates (Figs. 2 and 4). In particular, the lower panel of
Fig. 2 is strongly reminiscent of trapping, although strictly
closed trajectories do not appear for this A,. Also, while on
average the slope of fj(v, ) at v = *v, seems to have
decreased compared with time ¢t = ¢, [Fig. 4(a)], it varies
irregularly in the neighborhood of *v and therefore may
support excitation of oscillations with a wide range of
phase speeds.
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FIG. 3. fy(v, tpin) (solid lines) and fy(v,0) (dashed line)
on semilogarithmic (upper panel) and linear (lower panel)
scales for two velocity intervals: (a) —2.0 =v = 2.0 and
(b) 1.24 = v = 1.32.
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FIG. 4. fy(v, ty) (solid lines) and fy(v,0) (dashed line)
on semilogarithmic (upper panel) and linear (lower panel)
scales for two velocity intervals: (a) —2.0 =v = 2.0 and
(b) 1.24 = v = 1.32.

Figure 5 shows the evolution of, and power transfers
between, the average DF f,(v, t) and the DF components
fi(v, 1) and f,(v,r) at k; and k,, respectively, with
|fn(v, )] = {Re2[ f,,(v, )] + Im2[f,,(v, ]}'/2. Tt shows
that the dynamical picture can be divided into regions
with distinct characteristics that identify the processes
causing the evolution. Figure 5 shows that the turbulent
processes responsible for the (relative) flattening of f, in
the resonant area near v, start only after tg,, when spatial
Fourier components E,, other than m = 1 become compa-
rable to E; (not shown here).
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FIG. 5 (color online). Evolution of DF components f;, (top
panel), f; (middle panel) and f, (bottom panel). Red or gray
lines are DF components at the moments ?,;, and ty, e.g.,

Ifl (U: tsat)|~
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FIG. 6. Power transfer P(v) for a damping wave with y = 0.03
in Eq. (15) of Ref. [17].

The ripples of fy, |f,l, and |f,| in time and velocity
appear to be ‘““fingerprints” of ballistic change of initial
perturbation and power transfer between the field and
particles. The latter claim is justified by Fig. 6, which
illustrates the power transfer rate for a wave growing/
damping linearly by resonant wave-particle interactions
given by Eq. (15) in Ref. [17]. Together with Fig. 7, which
shows the evolution of 8f(v, 1) = [fo(v, 1) — fo(v, 0)]/
fo(v, 0) on the interval 0 =< ¢ =< t,,;,, Figs. 5 and 6 clearly
demonstrate that the physical process responsible for arrest
of linear damping is the resonant power transfer between
the wave and the m = 0 and higher order components of
the DF.

An insight into the striking difference between the cri-
tical exponents B, and B, comes from critical phe-
nomena theory: critical exponents depend on the properties
of correlations for a specific system (e.g., on its dimension-
ality) and/or a universality class (e.g., Ising, percolation,
surface growth, etc.) [4]. The DFs in full phase space
(position and velocity) are different at times 7, and fg,
(see Figs. 2—5 and 7), so the critical exponents might be
different. This difference is contrary to the idea that trap-
ping explains both the arrest and saturation phases, which
should result in the same exponents. Some plausibility for
velocity-space structures having this effect follows from
1D VP self-gravitating calculations: varying the resolution
in v seriously affected estimates of the trapping scaling
exponent 8 = 2 [5].
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FIG. 7. Evolution of 8f(v, t) until the moment = 7.

In summary, we studied the VP model for initial
Langmuir wave amplitudes slightly above the threshold
that separates damping and nondamping evolution.
Electron-ion simulations show that ion mobility does not
modify the threshold found for Langmuir damping in
electron-only simulations. Phase space diagnostics show
no signs of trapping or the DF flattening near ¢ = #,;,—
instead the combined effects of ballistic evolution of per-
turbations and resonant power transfer at |v| = vy are
responsible for arrest of the linear (Landau) damping
then. Since the spatially averaged DF is not flat at 7.,
but instead has a positive slope near the resonant velocity
v, this state is not stationary but instead leads to (linear)
growth which is saturated at ¢ = 7,,. The saturation time
t,, marks the boundary between the regular and stochastic
evolution of the wave electric field, again with no evidence
for trapping saturating the growth phase.
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