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Edge of Chaos in a Parallel Shear Flow
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We study the transition between laminar and turbulent states in a Galerkin representation of a parallel
shear flow, where a stable laminar flow and a transient turbulent flow state coexist. The regions of initial
conditions where the lifetimes show strong fluctuations and a sensitive dependence on initial conditions
are separated from the ones with a smooth variation of lifetimes by an object in phase space which we call
the ‘‘edge of chaos.’’ We describe techniques to identify and follow the edge, and our results indicate that
the edge is a surface. For low Reynolds numbers we find that the surface coincides with the stable
manifold of a periodic orbit, whereas at higher Reynolds numbers it is the stable set of a higher-
dimensional chaotic object.
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FIG. 1. Edge of chaos.—A 2-dimensional sample of phase
space, with the laminar state at the origin. Each grid square is
colored to show the transient lifetime for the trajectory with
initial condition at the center of the square. The speckled region
shows wildly varying transient behavior of the system and
indicates that the sampled points are near the chaotic saddle.
The smooth region appears to be clearly separated from the
speckled, and we call that separating boundary the edge. Axis
coordinates are magnitudes of the two randomly selected or-
thogonal vectors that generate the sample space.
In planar shear flows like plane Couette flow or pipe
flow, turbulent dynamics may appear despite the linear
stability of the laminar flow [1]. In these systems, suffi-
ciently small perturbations to the laminar flow condition
simply decay away, while slightly larger perturbations may
result in turbulence. Experiments and numerics show that
near onset, the turbulence is transient, sometimes persist-
ing for a very long time and then suddenly decaying to the
laminar profile [2–8]. The median lifetime of the transient
increases rapidly with Reynolds number (Re) and may
become longer than typical observation times, even at
moderate Re. Both experimental and numerical evidence
support an interpretation that the transients are due to a
chaotic saddle [2,6]. Several low-dimensional models,
based on Galerkin method, have been used to better under-
stand this chaotic saddle [3,4,9–11]. Using the 9-variable
model of [11], we were able to compute Lyapunov expo-
nents and confirm a link between lifetimes and dimension
of the chaotic saddle [12–14].

Previous work [2–5] suggests that transient behavior
depends sensitively upon the initial condition, with a
well-defined envelope to the chaos. As a gross descriptor,
one can measure the duration of the transient for some
initial state—the ‘‘lifetime.’’ Some regions of phase space
are characterized by slowly varying lifetimes, with no
sensitive dependence and no long transients. The chaotic
saddle, indicated by rapid fluctuations in the lifetime func-
tion, appears to be confined in phase space by a geometric
structure. We call this structure the edge of chaos, so
named because chaotic trajectories come arbitrarily close.
A plot of ‘‘lifetime’’ over a set of initial conditions (see
Fig. 1) provides a visualization of the edge.

The purpose of this Letter is twofold: (1) to outline a
new technique to calculate the edge, and (2) to present
evidence that the edge is a surface, with interesting invari-
ant structures embedded within. For Re< 402, the surface
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coincides with the stable manifold of a symmetric pair of
periodic orbits. A similar phenomena has been identified in
planar maps [such as the forced damped pendulum [15] ],
where the ‘‘edge’’ [16] between basins of attraction is
formed by the stable manifold of a periodic orbit. To our
knowledge, such structures have not previously been iden-
tified in higher-dimensional systems or systems with a
single basin of attraction. Additionally, we find that as
the Reynolds number is increased beyond Re � 402,
although the edge structure continues to exist as a saddle
surface in phase space, trajectories on the edge are no
longer asymptotically periodic, but chaotic. The resultant
limit set of these edge trajectories is a high-dimensional,
fractal object embedded in the edge surface.

Because characterization of the transition boundary re-
quires extensive numerical simulations, we chose to de-
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velop our ideas using the 9D Galerkin projection of [11],
which was derived from the 19-variable model studied in
[3] by restricting the dynamics to an invariant symmetry
subspace. The general structure of this class of
n-dimensional models is that of ordinary differential equa-
tions with linear damping, quadratic coupling and a con-
stant forcing:

_x i � �
di
Re
xi �

X

j;k

ai;j;kxjxk � fi; i � 1:; . . . ; n;

(1)

where di are the model dampings (essentially viscous), a��
are the coefficients for the quadratic nonlinear coupling
from the uru term, and fi stands for the forcing amplitude,
which in our case is limited to one mode, driving a single
parallel shear mode. Besides the Reynolds number, which
controls the damping, there are two geometric parameters
determining the widths and length of the flow domain.
Following [3], we take the height of the cell to be 2, the
width to be �, and the length to be 2�. The laminar profile
is a fixed point of the system. By linear change of coor-
dinates, we translate the system to place the attracting
laminar state at the origin. We denote this new system _y �
Q�y; Re�, indicating that the right-hand side is quadratic in
y and studied over the parameter Re.

The lifetime of an initial condition, denoted L�y0�, is
defined as the time it takes the trajectory to come within a
small distance � of the laminar profile. By theorems on
uniqueness of solutions to differential equations, each
initial condition has a unique lifetime. Points of finite
lifetime are in the laminar basin. A point whose trajectory
never approaches the laminar profile has an infinite lifetime
and is said to be in the saddle set.

In low-dimensional models [3,4] as well as fully re-
solved simulations [2,5], the lifetime function has a con-
sistent character: As we increase distance from the laminar
profile, the lifetime increases, first slowly and then very
rapidly. Beyond a certain point (the edge), lifetime fluc-
tuates wildly, with small intervals of smooth lifetimes
interspersed (see Fig. 2). This behavior can be considered
a typical ‘‘lifetime landscape’’ [3,4,17] for a chaotic
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FIG. 2. Lifetime indicates the edge.—Lifetime L�y� sampled
along a line. In the laminar basin, L�y� is smooth, while in the
saddle region, it appears fractal. The boundary between those
behaviors is an edge point. The gray curve illustrates that the
behavior on the sampling line is related to larger structures in
phase space.
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saddle. As illustrated in Fig. 3, the saddle set is bounded
away from the attracting origin by the edge structure.

Sampling of the lifetime function is a standard approach
and reveals some characteristic of both the saddle and the
edge. From results of [12,14] on dimension of the stable set
of the saddle, it is known that a typical line through phase
space will intersect the saddle on a measure-0 Cantor set,
with the lifetime diverging at each intersection. Edge
points are associated with the end points of the ‘‘removed
intervals’’ of the usual Cantor set construction. Each ‘‘re-
moved interval’’ is a segment of points that lie in the
laminar basin, yet any neighborhood of the ends of these
intervals contains an uncountable infinity of points in the
saddle set. For the range of Reynolds numbers considered,
the Cantor set is much more dense than the middle-thirds
construction, and the ‘‘small’’ [18] laminar intervals are
difficult to resolve.

The primary weaknesses of sampling are: (1) sampling
will not be sufficiently dense in a high-dimensional space;
and (2) there are no dynamics associated with the sampled
set. Whereas sampling looks at a fixed region of phase
space, we can gain additional insight by considering the
behavior of the edge under the flow of the differential
equation. A simple continuity argument shows that the
trajectory of an edge point must remain on the edge (an
edge trajectory). By analyzing edge trajectories, we ob-
serve the dynamical structure that creates the edge.

Approximation of edge trajectories.—Because the edge
trajectory is unstable, standard numerical integration can-
not provide satisfactory approximations. Our approach
provides a tractable solution to overcome this difficulty.
We are confident that the technique has wider application
to a broader class of problems. We outline our technique
below.

Tracing a simple path from the origin to the chaotic
saddle, there must be a first intersection of the edge. A
point on the path before we reach the edge will have a
trajectory whose amplitude remains small as it relaxes to
the origin. However, a point on the path after we cross the
edge will generate a chaotic transient, which typically
contains at least one large amplitude excursion before
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FIG. 3. The edge of chaos.—This cartoon schematically illus-
trates the edge of chaos, which separates the laminar basin from
the strange saddle. The picture is representative of small
Reynolds number, where we find that edge points lie on the 8-
dimensional stable manifold of a periodic saddle orbit.
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FIG. 4. High-side and low side pairs.—Trajectory amplitude
as a function of time plotted for three pairs of nearby initial
conditions. Trajectories labeled ‘‘�’’ are on the low side, and
those with ‘‘�’’ on the high side. The initial conditions for the
‘‘a’’ pair were separated by � 10�7. The pairs ‘‘b’’ and ‘‘c’’
result from refining the a pair (using bisection) to separations of
� 10�10 and � 10�13, respectively. The limit of the bisection
algorithm (in infinite precision) would yield a trajectory which
would remain bounded away from the origin, but would never
achieve a large amplitude typical of chaotic transients. The data
shown are for Re � 390.

T 2T 3T 4T

Time

A
m

pl
itu

de

chaotic saddle

laminar flow

FIG. 5. Numerical edge trajectory.—At time 0, we start with
two nearby initial conditions, one on each side of the edge. As
the trajectories evolve, they are repelled from the edge, and we
begin to lose precision in our approximation. At time T, before
the error grows large, we use bisection to find a new pair of
nearby initial conditions that are closer to the edge. By control-
ling refinement precision and interval T, we ensure the approxi-
mation maintains desired accuracy throughout the trajectory.
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FIG. 6. Periodic orbit pair for Re � 390, graphed by plotting
the y7 and y8 components over one period. Edge trajectories will
asymptotically approach either the black or the gray orbit.
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decaying. We classify an initial condition y as either on the
high side or the low side based on whether the norm of its
trajectory ( maxtk ��y; t� k ) is above or below an appro-
priately chosen threshold value. To apply these ideas, we
start with a low side point (near the origin) and a high side
point (a chaotic transient). Any path that connects them
must intersect the edge. By repeated bisection, we reduce
the distance between the high-low pair to approximate the
edge point that lies between them. This technique is much
more efficient than trying to find the point of transition
from smooth to fractal lifetimes and has proven very robust
in numerical implementation. Figure 4 shows how bisec-
tion leads to increasingly accurate approximations of an
edge trajectory. Because of the positive Lyapunov expo-
nent associated with the unstable edge, a numerical initial
condition will not generate the long trajectory which we
require. As illustrated in Fig. 5, we apply techniques
similar to the proper-interior-maximum-triple method
[19] to generate arbitrarily long numerical approximations
to the edge trajectory by successive refinement at suitable
time intervals.

Structure from edge trajectories.—In small models such
as the two or 4 coupled ordinary differential equations of
[10,20], the boundary of the laminar basin is defined by the
stable manifold of a fixed point that appears in a saddle
node bifurcation, and the structure in phase space is rela-
tively simple. In higher dimensions, these flow models
typically have a rich bifurcation behavior, and boundary
orbits (equivalent to the entire saddle set) are less clearly
structured. However, the invariant subset of the saddle
defined by the edge provides an identifiable structure
which can be resolved by examining edge trajectories.

For Re & 402, we find that a numerical edge trajectory
converges to a periodic orbit, which we denote as p�.
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Because of a symmetry of the equations of motion, peri-
odic orbits occur in pairs, and we denote the symmetry
orbit as p�. An example pair is shown in Fig. 6. These edge
periodic orbits are unstable in only one direction, creating
8-dimensional stable manifolds Ws

p� and Ws
p� , which are

surfaces in 9-dimensional space. As the Reynolds number
increases, the edge orbit undergoes period doubling and
period halving bifurcations. At these bifurcations, the
‘‘old’’ periodic orbit becomes unstable in two directions,
and the ‘‘new’’ edge orbit emerges with an 8-dimensional
stable manifold. Simulations indicate that for each value of
Reynolds number in this range, there is a unique periodic
orbit pair with 8-dimensional stable manifold such that
numerical edge trajectories converge to one or the other
member of that pair, and therefore, the essential part of the
edge is formed by the union of Ws

p� and Ws
p� .

Above Re � 402, edge trajectories no longer converge
to a periodic orbit. At the bifurcation, the old edge orbit
becomes unstable in two directions, but no new periodic
orbit emerges with an 8-dimensional stable manifold.
Throughout the parameter range considered, the edge set
1-3
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FIG. 7. The relative attractor.—From a long edge trajectory at
Re � 420, we use the zero crossing of y4 to construct a Poincare
section. The graph shows only the y7 vs y8 components. The data
appear to have the fractal structure characteristic of chaotic
attractors.
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appears to vary continuously in phase space with changes
in the parameter, despite any bifurcations. The invariant
saddle object that persists appears to be the union of
surfaces that are smooth deformations of the manifolds
Ws
p� and Ws

p� which existed before the bifurcation. In
this parameter range, edge trajectories are numerically
chaotic, with two positive Lyapunov exponents. We con-
jecture that the leading Lyapunov exponent is transverse to
the edge, while the second positive exponent can be asso-
ciated with the observed chaos on the edge. Edge trajecto-
ries converge to a more complicated invariant set which we
call a relative chaotic attractor because it attracts nearby
edge trajectories, while the edge itself remains unstable.
Figure 7 illustrates that edge trajectories approach some
higher-dimensional object instead of being asymptotically
periodic.

Between the folds of the envelope.—Because the edge
appears to be an 8-dimensional surface which could sepa-
rate phase space, a reasonable question, then, is: ‘‘how do
chaotic transients return to the origin?’’ In answer, we note
the following: the edge has two symmetric parts inter-
twined in a complex fashion, repeatedly folded throughout
phase space. Locally, we can treat this object as separating
phase space. However, because of the fractal structure,
when we ‘‘cross’’ the edge, we make an infinite number
of crossings. Points on the saddle (edge) have infinite
lifetime, but are a measure-0 set and are not detected in
either experiment or simulation. By definition, a chaotic
transient has finite lifetime; its initial condition lies close
to the saddle but in the laminar basin. A point in the basin is
contained in an open region that lies between the two
symmetric parts of the edge.

Concluding remarks.—The edge of chaos described
here is significant for issues such as control of turbulence,
since it separates the laminar from the turbulent.
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Transitions from the laminar to the turbulent state and
vice versa will have to pass close to the edge of chaos
described here. It is remarkable that even though the
turbulent state and its almost space filling basin of attrac-
tion are high dimensional, the edge orbits seem to be of
much lower dimension.
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