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Thermal Background Can Solve the Cosmological Moduli Problem
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It is shown that the coherent field oscillation of moduli fields with weak or TeV scale masses can
dissipate its energy efficiently if they have a derivative coupling to standard bosonic fields in a thermal
state. This mechanism provides a new solution to the cosmological moduli problem without creating too

much entropy at late time.
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Modern theories of high energy physics contain a num-
ber of scalar fields which have a flat potential and interact
with ordinary particles only with the gravitational strength
[1]. In the context of low-energy supersymmetry, these
moduli fields typically have a flat potential intrinsically
and acquire a mass of the order of weak or TeV scale when
supersymmetry is broken [2] although other mechanisms
of moduli stabilization have also been extensively dis-
cussed recently [3]. During inflation in the early universe
[4], supersymmetry is spontaneously broken in a different
manner than it is today due to the large vacuum energy
density. Then moduli fields, which we denote by ¢, typi-
cally acquire a mass of the order of the Hubble parameter
and they settle down to a potential minimum at this stage,
which is deviated from today’s value at the current poten-
tial minimum by up to the gravitational scale, A¢ =<
Mg = 2.4 X 10'® GeV. After inflation their mass is turned
off to a much smaller value due to the disappearance of
vacuum energy density and they keep their position until
the Hubble parameter decreases to their eventual mass
scale which is presumably of order of the weak scale or
TeV scale as stated above. The scalar fields then start
coherent oscillation with the initial amplitude up to Mg,
which will dominate the energy density of the universe
eventually. According to the conventional estimates, their
lifetime is given by
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that is, they decay after the primordial nucleosynthesis
creating a huge amount of entropy to demolish the suc-
cessful primordial nucleosynthesis [1].

In this Letter we present a new class of solution to the
cosmological moduli problem by arguing that the previous
estimate of the decay rate (1), which has been used in all
the other proposed solutions to the problem [5] does not
apply in a finite-temperature and finite-density state of the
early universe and that it is much more enhanced than in
the case of decay in a vacuum. As a result we show that the
coherent moduli oscillation can efficiently dissipate its
energy density well before the big bang nucleosynthesis.

The crucial point is to take moduli decay through de-
rivative coupling correctly into account, such as a coupling
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with a kinetic term of other fields. Indeed, we expect the
moduli field is coupled with gauge fields through

MiF wpF?7. It may also be coupled with scalar fields as

G

)\M% (9 x)* or /\M%XDX where y is a generic scalar field
and A is a dimensionless coupling constant of order unity
[6]. Previously these couplings were expected to give a
decay rate no different from (1) at most, because using the
equation of motion, [y = mi X, it was concluded that the
derivative coupling would give a decay rate similar to the
coupling Mi;mi X*, which yields (1) for m, = 2m,,.

Such a naive analysis, however, could only be valid in
decay in the vacuum and would not apply in the high-
temperature environment in the early universe. If y is a
standard field in the visible sector, it is strongly coupled
with other degrees of freedom in the early universe and
rapidly reaches thermal equilibrium. Then they acquire a
thermal mass of order of ~gT in general, where g is a
typical gauge coupling and 7 is the cosmic temperature, so
that the right-hand side of the above equation of motion
could be significantly enhanced. Alternatively, one may
regard the derivative d acting on y as not yielding its rest
mass energy m, but energy-momentum arising from finite-
temperature environment, d ~ 7 modulo some coupling.
Then, the strength of interaction A M% (9 x)? is estimated as

X’ 2

Lint =

The decay rate of ¢ through the above interaction should
read

AZ 4T4- /\2 4T5
I~ g—2[1 + 2n3<@>}c ~ 280 ¢ )
8TMgm, 2 27TMGm¢

where C is a suppression factor due to a large thermal mass
of the decay product y which has been given in Ref. [7] for
a specific model. Here ng(w) = 1/(e®/” — 1) is the ther-
mal number density of a boson and the factor in the bracket
represents the effect of induced emission [8,9]. Taking A ~
g~1,my~10% GeV, T ~ 10" GeV, which is a typical
radiation temperature at the onset of moduli oscillation
H~mg, we find I' ~ 3 X 10%C GeV. Thus if C takes an
appropriate value, ¢ can dissipate its energy right after it
starts oscillation.
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In order to examine that the above estimate is correct, we
employ nonequilibrium field theory to calculate the dis-
sipation rate of a modulus ¢ in the presence of a derivative
interaction. For simplicity we consider the following
model consisting of two scalar fields, ¢ and y.

-E __(a,u,d))2
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which also mimics interaction Mi; F,, F*” if we identify g
with the gauge coupling strength.

We calculate the dissipation rate of ¢ under the follow-
ing setup appropriate to the specific problem we are work-
ing on. First we neglect cosmic expansion since we are
interested only in the case in which dissipation time is
shorter than the cosmic expansion time. Second we assume
x is in a thermal state with a specific temperature T = 3!
owing to the rapid thermalizing interaction due to the self-
coupling. Finally, we consider the situation in which the
parametric resonance [10] is ineffective, which is the case
for the modulus mass range of our interest [11].

We calculate an effective action for ¢ and derive an
equation of motion for its expectation value using the
closed time-path formalism [12,13]. Although this method
has been applied to various cosmological problems by a
number of authors [14,15], to our knowledge, derivative
coupling at finite temperature has not been investigated in
this context yet. The one-loop effective action relevant to
dissipation due to the derivative coupling is given by

Mo, s]=~ [drds@O+m)a.0o
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Here ¢, and ¢, are the mean and difference of the field
variable in the forward time branch (t = —oo to +), ¢,

and those in the backward time branch ( = +o0 to —),

¢, namely, ¢. = (¢+ + ¢—)/2 and ¢y = — ¢,
respectively. ¢, and ¢_ should be identified with each
other in the end. The kernels in (5) are defined by

AQ
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Here GJ,, (x, x') is a finite-temperature Feynman propaga-
tor of field derivatives defined by
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G (%, X)) = (BIT9 , x (%), x (X)) B)
= 9w wGF(x — x) +i8,08,06*(x — X),
3
with G)F((x) = (BIT x(x) x(x") B).

The effective action (5) is complex-valued as a manifes-
tation of the dissipative nature of the system. We cannot
obtain any sensible equation of motion by simply differ-
entiating with respect to a field variable because we are
dealing with a real scalar field and its equation of motion
should be real valued. As shown in Ref. [14], one can
obtain a real-valued effective action by introducing a ran-
dom Gaussian variable £(x), which represents fluctuation
related to dissipation, with the dispersion (£(x)&(x')) =
D(x — x'). As a result of the equation of motion for the
expectation value ¢_(x) is given by

O+ mé)d)c(x) + ﬁwdﬂfdzx/c(x —x) . (x) = £(x).
)]

Hereafter we omit the suffix c.

As described in Refs. [7,9], this equation can easily be
solved using Fourier transform. As a result, we find the
dissipation rate of zero-mode modulus oscillation is related
to the imaginary part of ¢’s self-energy and given by

r, = i—Cgi;’:”), (10)
with Cy(m,) being the k = 0 mode of the Fourier trans-
form, Cy(w), of the memory kernel C(x).

In order to take thermal effects of y correctly into
account, we should use the full dressed propagator,
g,ﬁ(;i“) (x, x') to calculate C;_o(w = mg) [7]. It is obtained
by calculating

B (x, ') = (BIT ), x(x)3, x(x)

X exp(—i f Lodg), A1)

using the Matsubara representation [16] and resummation,
where

1 ¢
18X A (8)()2 (12)

L int = T
Since loops generated by the second term of (12) have an
extremely small effective coupling,

d p T
AE A~ A —~1078), for T ~10'° GeV,
Mg Mg Mg
they are safely negligible. As a result, the finite-
temperature dressed propagator is given in terms of the
spectral representation as

171301-2



PRL 96, 171301 (2006)

PHYSICAL REVIEW LETTERS

week ending
5 MAY 2006

1 1

G L4 (p, 1) = i f ‘z’—j({[l + np(w)1000) + n3<w>e<—r>}[

with p, = (@, p), 0} = p> + m3 + Zg(p) + T3 andT, =

(w+ ilﬂp)2 —w? (w— lTp)2 )

17} :|py,pv + i6,u,061/0>e_iwtr
p

(13)

p

—2,(p)/(Qw), where 2x(p) and X, (p) are real and imaginary

parts of x’s self-energy. To the lowest nonvanishing order, we find 2¢(p) = g*T?/4 and I', = 3¢*T*/(1287w},) [17].
Inserting (13) into (10), the dissipation rate of the coherent field oscillation is given by

A? dp 1
Ly = 2 34,2
2myoMe, ) 2m)° 4w

{(21:2 + m2Y2ng(w)) + 1][

2I‘,, 2r » }

(mg — 20,2+ QT2 (my + 20,2 + (2,2

+ [ —22p? + m3)*n(w))eP BT, + 4(2p* + m2)w!,I' [2ng(w)) + 1]]

mgy — Zw;, my + 20);,
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to the first order in I',. Here m7 = m}( +3r =
m3 + g*T?/4 is the finite-temperature mass. We find the
last term is dominant in (14), to yield
ro~ A2g4m%T3 _ )\2g6T5
¢ 512 MEmS, 20487 MEm?
"y G
/\2g6T5

= 1.6 X 1075 (15)

The above result has the same form as (3) with the sup-
pression factor C = g?>/(102472) depending only on the
coupling constant as expected [7].

We now discuss cosmological implications of the above
result (15). Taking g ~ A ~ 1, my ~ 10 GeV, and T ~
109 GeV as before, we find a value as large as F¢ ~3X
10* GeV, which is much larger than the cosmic expansion
rate in the interested regime. This does not guarantee,
however, that the moduli fields dissipate its energy imme-
diately, because the above expression has been obtained
under several assumptions. So we investigate its signifi-
cance more carefully here.

Our result (15) has been obtained using perturbative
analysis, which requires m,4 > I';, and under the assump-
tion that the scalar field is rapidly oscillating in the expan-
sion time scale, m,4 > H. Although moduli can certainly
dissipate its energy partially even before the onset of rapid
oscillation, the dissipation rate in such a slowly evolving
regime would be given by a different expression which
could be worked out using a formalism described in, e.g.,
Ref. [18]. We neglect dissipation in such a regime here. In
this sense, our analysis below provides a conservative
result and in reality moduli could be dissipated even
more efficiently in total.

In the conventional scenario neglecting the above effect,
the moduli start oscillation with the initial amplitude ¢; <
Mg as the cosmic expansion rate becomes smaller than
~m,. For definiteness we assume the reheating after in-
flation has been completed by then and that the cosmic
energy density consists of moduli and radiation only,
which we denote by p4 and p,, respectively. We find p, =
2p, at the onset of oscillation for ¢; = M. In the above

(mg +2wh)* + (2T )

, 2
} + 2mdn(w!)eBoh BT, — ot } (14)

my + (21,)

%onservative spirit, we pretend that dissipation rate we
have obtained, (15), is not turned on until the epoch ¢
characterized by H(t;) = my/f where f >> 1 is a parame-
ter which represents the rapidness of field oscillation at that
time. The energy transfer equations read

dp,

(16)

Since we expect F¢ > H, we can neglect the redshift
terms in the right-hand side of the above equations for a
sufficiently small time scale, At < H~!, when total energy
density pioc = py + p, is conserved. Taking the tempera-
ture dependence of Iy o TS pf/ * into account, we can
solve these equations in this regime, to yield

paﬁ(t) = ptot[l —-(1- KeiAp‘S“/f(tit"))ﬂ _’4KptoteiAp‘5“/‘4(tit"),

for t —t, < H'. Here A is a constant defined by A =

F¢ p;5/ 4, and K is a constant of order of unity which is
determined by the initial ratio p,/p,l,—,. We find K =
0.314 for py/p,li=;, = 1.

The above result shows that the modulus decays expo-
nentially for the period At < H~! with the dissipation rate
F’¢ = Aptjo/t4. As we will see below, we can naturally find
I"¢ > H(t;), so that the universe would be radiation domi-
nated by At < H™'. For At = H™', redshift terms in (16)
are important but the second term of the right-hand side of
the second equation is already negligible. Hence we find
a*()p,(r) is conserved with a(z) o« /2 in this regime.
Then we can solve the first equation to ﬁnd a*(1)p 4 (1) will

reduce by an extra factor of exp(— 3H—‘f_)) for At > H™ 1.

Thus the moduli-to-entropy ratio n,/s is lowered by a
Rl KA . . c ..

factor of ~ exp(— T(i)) including its decay in the initial
regime At < H™'. If a significant amount of entropy is
created in this process, which is not likely in the present
case due to the rapidness of decay unlike in the conven-
tional scenario, the ratio could be reduced even more.

We now work out the numerical value of the dissipation
rate. If there are N decay modes with the same coupling, it
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is given by
246 90MZm?\5/4
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cMg\ 7T°8+f
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<10><2> § (102> <40> <102GeV> ©
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which is to be compared with the expansion rate,

H= 2.5<£>_1<102mﬁ> GeV. (18)

I’ﬁﬁ can be much larger than H if we adopt A somewhat
larger than unity or assume that ¢ has a derivative coupling
to many fields. Both are naturally realized since the moduli
fields are expected to be coupled with other fields univer-
sally and the coupling of the type )LM%(B x)? arises from
expanding the exponential coupling e*?/Ma(9y)? where
there is no reason to restrict A < 1. In fact, we usually
find A > 1 [19]. For perturbative analysis to be valid and to
ensure oscillatory behavior of ¢, F¢ cannot exceed m..
But within this limit, the modulus can efficiently dissipate
its energy, say, by a factor of ¢ >° or so even within the
above conservative analysis.

However, we cannot let the moduli decay completely, no
matter how efficient our dissipation mechanism is. This is
due to the fact that our mechanism relies on the thermal
effects. The final abundance of moduli is not zero but its
thermal value at the temperature 7, when I';, becomes
smaller than H [9]. That is, the abundance of kK mode at
freeze-out is given by ng(M;)=T;/M, with M, =

m}, + k* for Ty >> M. The contribution of low momen-
tum mode |k| = 0 ~ m, to the moduli-to-entropy ratio, to
which we are primarily concerned, is given by

ng 90
s 4mg. T} my (2m)’

—5/3 7/ \\4/3 m 2/3
~1077(E) (S T (), (19
(102> (2) § (102 GeV (19

which is comfortably small.

Note also that the tadpole diagrams generate a linear
term in the effective action, which shifts the potential
minimum at finite temperature by the amount & ¢,;,,(T)~
m%ﬂs . Hence the proposed mechanism anchors the modu-
lus at a different field value than the zero-temperature
minimum. Since the Hubble parameter is already much
smaller than m, when it works, the modulus traces the
change in ¢,,;,,(T) adiabatically after being relaxed to
Gmin(Ty) at T =T, until it finally reaches the zero-
temperature minimum. Therefore this shift is harmless.

In summary, we have discovered a new mechanism
which dissipates coherent oscillation of moduli fields effi-
ciently without introducing any new physics, by carefully
recalculating its decay rate through the derivative coupling

T, 47Tm';

in the thermal background. As a result we have shown that
our mechanism can dissipate the most significant part of
modulus energy efficiently.
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