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Classical Simulation of Limited-Width Cluster-State Quantum Computation
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We present a classical protocol, using the matrix product-state representation, to simulate cluster-state
quantum computation at a cost polynomial in the number of qubits in the cluster and exponential in d—
the width of the cluster. We use this result to show that any log-depth quantum computation in the gate
array model, with gates linking only nearby qubits, can be simulated efficiently on a classical computer.
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The model of cluster-state quantum computation pro-
posed by Raussendorf and Briegel [1] has attracted much
interest in recent years. This model demonstrates some
remarkable features, most notably the fact that once a
particular multiqubit state (the cluster state) has been
prepared, the whole processing of the data is implemented
by measurements of individual qubits and feed forward
(that is, the measurement carried out on one qubit may
depend on the outcomes of previous measurements). In
general, the cluster state is thought of as a two-dimensional
grid of qubits, entangled by applying controlled-phase
(CPHASE) operations between neighboring pairs. Due to
this entangled structure, any quantum circuit can be simu-
lated by cluster-state computation [1] with a polynomial
resource overhead (in terms of the number of qubits and
elementary operations). Yet, the computational power of a
cluster does not depend only on the amount of resources
that were invested in its construction but also on its ge-
ometry. It was shown by Nielsen that any computation
implemented with a linear cluster (a single chain of qubits)
can be simulated efficiently on a classical computer [2].

In this Letter, we analyze the computational power of
limited-width cluster states. We show that any computation
on a cluster state in the shape of a rectangular grid can be
simulated on a classical computer at a cost which is qua-
dratic in the number of qubits and polynomial in 2d, where
d is the width of the cluster. Therefore, if we limit the width
so it scales like the log of the number of logical qubits, then
any computation on that cluster can be simulated effi-
ciently. We will generalize our proof to include also clus-
ters in which the connections between qubits are not
necessarily between nearest neighbors but are bounded
by some constant length.

Since any quantum computation can be implemented
by cluster-state computation, our results imply that any
quantum computation in the gate array model with depth
that scales like the log of the number of qubits and where
the range of the interactions is bounded by a constant (that
is, two-qubit gates are applied only to qubits which are not
too far apart) can be efficiently simulated on a classical
computer. Similar results concerning the computational
power of limited-depth quantum gate arrays have been
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reported recently [3] following from a completely different
approach.

Our approach relies on the representation of the cluster
state as a matrix product state (MPS). We shall follow here
the construction of Vidal [4], through which the matrix
representation of the state of n qubits (j�i) is obtained by a
sequence of n� 1 Schmidt decompositions. These
Schmidt decompositions relate to a certain ordering of
the qubits, where the kth decomposition corresponds to a
partition of the system into the first k qubits and the
remaining n� k qubits. Let us first write the state of the
system in the computational basis

j�i �
X1

i1;���;in�0

Ci1���in ji1i � � � jini: (1)

The key point of the construction is the representation of
the coefficients Ci1���in as a product of n tensors (��k�) and
n� 1 vectors (��k�)

Ci1���in �
X

�1;����n

��1�i1�1 ��1��1 ��2�i2�1�2�
�2�
�2 ��3�i3�2�3 � � ��

�n�in
�n�1 : (2)

Each index �k goes from 1 to the number of terms in the
kth Schmidt decomposition (the Schmidt number), and the
elements of the vector ��k� are the corresponding Schmidt
coefficients. Note that the Schmidt number (or the log of
this number) relating to a partition of the system can be
seen as a measure of the entanglement between the two
parts [5] and, as such, cannot increase under local opera-
tions and classical communication. We denote the maximal
Schmidt number over all n� 1 Schmidt decompositions
by �.

Let us now discuss in brief Vidal’s construction process.
One starts by expressing j�i using the first Schmidt de-
composition (corresponding to the partition into qubit 1
and the rest):

j�i �
X

�1

��1��1 j�
�1�
�1 ij�

�2���n�
�1 i: (3)

Expressing the Schmidt vector j��1��1 i in the computational
basis, we obtain
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j�i �
X

i1�1

��1�i1�1 ��1��1 ji1ij�
�2���n�
�1 i: (4)

In the next step, the states j��2���n��1 i are expressed in terms
of the computational basis states of the second qubit and of
the Schmidt vectors j��3���n��2 i corresponding to the second
Schmidt decomposition, to obtain

j�i �
X

i1�1

X

i2�2

��1�i1�1 ��1��1 ��2�i2�1�2�
�2�
�2 ji1iji2ij�

�3���n�
�1 i: (5)

This process can be repeated qubit by qubit until the
representation in (2) is obtained. The crucial point here is
that one can always express the Schmidt vectors j��k���n��k�1 i
of qubits �k; . . . ; n�, obtained by the (k� 1)th Schmidt
decomposition, in terms of the Schmidt vectors
j��k�1���n�

�k i, obtained by the kth Schmidt decomposition.
Hence, we can always write

j��k���n��k�1 i �
X

ik�k

��k�ik�k�1�k�
�k�
�k jikij�

�k�1���n�
�k i: (6)

It is fairly easy to see that if this was not the case and one of
j��k���n��k�1 i had a component outside the subspace spanned by
the states jikij�

�k�1���n�
�k i, then the overall state j�i could

not lie within the subspace spanned by j��1���k��k ij��k�1���n�
�k i,

in contradiction to the kth Schmidt decomposition.
A description of the state of our system in terms of the

��k�’s and ��k�’s would require approximately �2�2 � ��n
parameters, instead of the 2n coefficients (Ci1���in) required
to represent the state in the computational basis. The
parameter which determines the size of the description of
the system is therefore �. In general, � is of order 2n and
the MPS representation is not very useful. However, if the
state does not carry much entanglement, then � may be
smaller and the MPS representation may be advantageous.
In particular, if � scales like poly(n), then one would have
an efficient description of the state involving only poly(n)
parameters.

Since cluster-state computation involves only single-
qubit operations, it is easy to see that the Schmidt number
associated with any partition cannot increase and, hence,
that � will not increase during the computation. Therefore,
if the initial cluster state has an efficient MPS representa-
tion, all later states can also be represented efficiently.
Furthermore, we show that these later representations can
be obtained efficiently and, hence, prove the following:
Any computation consisting of (projective) single-qubit
measurements and feed forward on a system of n qubits,
where the maximal Schmidt number for all bipartitions of
the system along a certain ordering is �, can be classically
simulated at a cost of O�n2poly���� in computational time
and memory space.

In order to simulate a single-qubit measurement, we
need to calculate the probabilities for the two outcomes,
sample from the probability distribution, project the state
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of the system accordingly, and then renormalize the pro-
jected state. An arbitrary single-qubit measurement can be
implemented by first applying a single-qubit unitary and
then measuring the qubit in the computational basis. Let us
examine the effect of a single-qubit unitary acting on the
kth qubit on the MPS representation of the state. Clearly,
each of the computational basis states would undergo the
following transformation:

jiki !
X

i0k

Ui0kik
ji0ki: (7)

This operation can be incorporated into the tensors corre-
sponding to the k qubit—��k�ik�k�k�1 —by replacing them with

~�
�k�ik
�k�k�1 � U0ik�

�k�0
�k�k�1 �U1ik�

�k�1
�k�k�1 : (8)

Updating the MPS representation after a single-qubit uni-
tary would therefore take O��2� basic operations.

The probabilities of the outcomes in the computational
basis can be easily calculated from the following represen-
tation of the state of the system, obtained by using the (k�
1)th Schmidt decomposition, and Eq. (6):
X

ik

X

�k�1�k

��k�1�
�k�1 ��k�ik�k�1�k�

�k�
�k j�

�1���k�1�
�k�1 ijikij�

�k�1���n�
�k i: (9)

The probability p�ik� for receiving the outcome ik in a
measurement of the k qubit is therefore obtained from the
tensor ��k�ik�k�1�k and the vectors ��k�1�

�k�1 and ��k��k . Defining

Aik�k�1�k � ��k�1�
�k�1 ��k�ik�k�1�k�

�k�
�k (10)

and using the orthogonality of the Schmidt vectors, we
have

p�ik� �
X

�k�1�k

jAik�k�1�k j
2: (11)

Sampling from this probability distribution, and receiv-
ing outcome jrki, the state of the system after projection
and renormalization will be jrkij�0i, where

j�0i �
1
�����������
p�rk�

p
X

�k�1�k

Ark�k�1�k j�
�1���k�1�
�k�1 ij��k�1���n�

�k i: (12)

In what follows, we leave out the state of the measured
qubits (which remain in a product state with the rest of the
system) and consider the MPS representation of the re-
maining qubits. This representation must now be updated,
since the �’s and �’s above do not correspond to Schmidt
decompositions of j�0i, and, in order to be able to calculate
the probability distribution for the measurement of the
remaining qubits efficiently, the correct MPS representa-
tion must be recovered. Indeed, as we consider a general
n-qubit state (where the measurement of one qubit might
affect all other qubits), all of the �’s and �’s must be
updated. Tracing over qubits 1; . . . ; k� 1, we obtain the
� by � reduced density matrix ��k�1���n�
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��k�1���n�
�k�0k

�
1

p�rk�

X

�k�1

Ark�k�1�k�A
rk
�k�1�0k

�	: (13)

Given the reduced density matrix, we can its find eigen-
values ~��k�1�

�k�1
, which are the Schmidt coefficients for the

above partition. We can also find its eigenvectors M�k�1�k ,

which represent the new Schmidt vectors j��k�1���n�
�k�1

i in the
basis of the old Schmidt vectors:

j��k�1���n�
�k�1

i �
X

�k

M�k�1�k j�
�k�1���n�
�k i: (14)

To calculate the Schmidt coefficients ( ~��k��k ) for the next
partition, between qubits �1; . . . ; k� 1; k� 1� and �k�
1; . . . ; n�, we write the state of system as follows:

j�0i �
X

�k�1

��k�1�
�k�1
j��1���k�1�

�k�1
ij��k�1���n�

�k�1
i

�
X

�k�1�k

��k�1�
�k�1

M�k�1�k j�
�1���k�1�
�k�1

ij��k�1���n�
�k i

�
X

�k�1�k�1
ik�1

Bik�1
�k�1�k�1

j��1���k�1�
�k�1

ijik�1ij�
�k�2���n�
�k�1 i; (15)

where

Bik�1
�k�1�k�1

�
X

�k

��k�1�
�k�1

M�k�1�k�
�k�1�ik�1
�k�k�1 ��k�1�

�k�1 : (16)

We can now write the reduced density matrix of qubits
�k� 2; . . . n� in terms of the tensor B

��k�2���n�
�k�1�0k�1

�
X

�k�1ik�1

Bik�1
�k�1�k�1

�Bik�1

�k�1�0k�1
�	: (17)

Having calculated ��k�2���n�, we can now find its eigenval-
ues ~��k��k (the Schmidt coefficients) and its eigenvectors
M�k�k�1

, which represent the new Schmidt vectors

j��k�2���n�
�k

i in the basis of the old Schmidt vectors

j��k�2���n�
�k�1 i, as in (14).
The relation between j��k�2���n�

�k
i and j��k�1���n�

�k�1
i defines

the new tensors ~��k�1�ik�1
�k�1�k

corresponding to qubit k� 1.
Examining (6), we see that

~�
�k�1�ik�1
�k�1�k

�
1

~��k��k
hik�1;�

�k�2���n�
�k

j��k�1���n�
�k�1

i

�
1

~��k��k

X

�k�k�1

M	�k�k�1
M�k�1�k�

�k�1�ik�1
�k�k�1 ��k�1�

�k�1 ;

(18)

where we have used (14) and the corresponding relation for
j��k�2���n�

�k
i in the last line.

We can proceed in the same manner to obtain all the
reduced density matrices in one direction (��k�3���n� to ��n�)
and their eigenvalues and eigenvectors. At each step, the
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reduced density matrix is given as a function of the eigen-
vectors and eigenvalues obtained in the previous step (as
well as the old �’s and �’s). The new ~�’s are found using
the eigenvectors of two consecutive steps as in (18). In
order to update the MPS representation in the other direc-
tion, we first express j��1���k�1�

�k�1
i in terms of j��1���k�1�

�k�1 i

using (12) and (14) and

j��1���k�1�
�k�1

i �
1

~��k�1

h��k�1���n�
�k�1

j�0i; (19)

then reexpress these states in terms of j��1���k�2�
�k�2 ijik�1i

using

j��1���k�1�
�k�1 i �

X

ik�1�k�2

��k�2�
�k�2 ��k�1�ik�1

�k�2�k�1 j�
�1���k�2�
�k�2 ijik�1i:

(20)

Expanding j�0i as in (15) using (19) and (20), and tracing
over qubits �k� 1; k� 1; . . . ; n�, we obtain ��1���k�2�. The
eigenvalues and eigenvectors of this matrix can be used to
obtain ~��k�2�

�k�2
and ~��k�1�ik�1

�k�2�k�1
in a similar way as before, and,

repeating this procedure, we can obtain all of the remaining
~�’s and ~�’s.

In each step of the updating procedure, we deal with a
constant number of (at most) � by � matrices, requiring
poly(�) basic operations, and hence updating the whole
state after a measurement requires n poly(�) basic opera-
tions. As we can apply at most n single-qubit measure-
ments to the state, the overall computation can be
simulated with O�n2poly���� computational resources.
Note that we do not include the cost of computing the
feed forward from the measurement results, as this is
common to both the quantum computation and the classi-
cal simulation (and for standard cluster-state computation
can be computed efficiently).

In the above procedure, we simulate the single-qubit
measurements in the same order as they are measured in
the actual computation. This is usually independent of the
order in which qubits in the MPS representation are num-
bered, which we choose so as to minimize �. However, if
we can number the MPS representation in the same order
as the qubits are measured without significantly increasing
�, then the simulation can be considerably simplified. In
this case, we do not have to update the MPS representation
after the measurements, as the probability distribution can
be calculated directly from the projected state. The cost of
the simulation in this case would be O�n�2�.

Let us now consider a cluster state in the shape of a
rectangular grid of width d and length l > d where each
qubit is entangled to all its nearest neighbors. In order to
construct our MPS representation, we choose the following
ordering of the qubits: We start from the qubit in the top-
left corner and number the qubits column by column until
we reach the qubit in the bottom-right corner. In this case,
the maximal Schmidt number � for all bipartitions of the
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FIG. 1. A rectangular cluster state. The solid lines represent
entanglement (CPHASE connections), the thick dashed line shows
a typical partition of the cluster, and the dotted lines show the
connections that do not exist in the incomplete cluster.
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system is 2d. To prove this, we consider a typical biparti-
tion and an incomplete cluster, similar to the original but
where the 2d qubits next to the partition are only entangled
with each other (and not with the rest of the cluster), as
shown in Fig. 1. The original cluster can be constructed
from the incomplete cluster by local unitary operations
(that is, operations which act on only one side of the
partition) and, therefore, both have the same Schmidt
number S with respect to this partition. The state of the
incomplete cluster can be written as j�AijPij�Bi, where
jPi stands for the entangled state of the 2d qubits next to
the partition and j�A=Bi are the states of the remaining
qubits on the left and right sides, respectively. Since jPi
contains only 2d qubits, it is clear that S 
 2d. In fact, one
can easily verify that S � 2d, since jPi itself can be con-
structed from d maximally entangled pairs of qubits by
local unitary operations. As no bipartition has a greater
Schmidt number than S, we have � � 2d.

In general, we expect both d and l to scale as poly(N),
where N is the number of logical qubits, and, hence, the
above simulation would require exponential resources.
However, any cluster-state computation implemented by
a grid of physical qubits with limited width, that is, where d
scales like (at most) log�N�, can be simulated at a poly-
nomial cost in time and memory space.

We can also extend our approach to more general cluster
states, in which non-neighboring qubits are connected by
CPHASE operations, as long as these connections have
limited range. Consider a cluster where the vertical dis-
tance between connected qubits (across the width d) is not
limited, and the horizontal distance is limited by r. That is,
a qubit in column k may be connected to any qubit in
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columns fk� r; . . . ; k� rg. Looking at a typical partition
where the left side consists of the first k� 1 columns and
part of the kth column, and the right side contains the rest
of the cluster, we consider an incomplete cluster where the
block consisting of columns fk� r; . . . ; k� rg is isolated
from the rest of the cluster (i.e., in the incomplete cluster,
the qubits of this block have the same connections between
themselves but no connections to the rest of the cluster). As
in the previous case, the state of the incomplete cluster is
given by j�AijP0ij�Bi, where jP0i is the state of the
isolated block. jP0i consists of only �2r� 1�d qubits, so
the Schmidt number for the partition must be less than
2�r�1=2�d. As before, the original cluster can be recovered
by local CPHASE operations; hence, � 
 2�r�1=2�d. It is
therefore clear that any cluster-state computation on a
rectangular grid can be efficiently simulated with a classi-
cal computer as long as either d (the width of the cluster) or
r (the range of the connections) scales like log�N� and the
other is constant.

In our general procedure, we did not specify to which
qubits the input is introduced and in which order the
measurements are performed in the computation. Given
an efficient MPS representation of the initial state of the
cluster, any computation can be simulated efficiently.
Thus, considering the l� d rectangular grid above, we
can allocate a column of physical qubits for each logical
qubit (measuring the physical qubits, say, from top to
bottom). Simulating a quantum gate array in this way, l
would be proportional the number of logical qubits N, d
would be proportional to the depth of the computation (i.e.,
the number of time steps), and r would be proportional to
the range over which gates can act. Therefore, we can also
state that any quantum computation in the gate array model
where either the depth of the computation or the range of
the interaction scales like log�N�, while the other is
bounded by a constant, can be efficiently simulated on a
classical computer.
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