
PRL 96, 168101 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
28 APRIL 2006
Dominant Kinetic Paths on Biomolecular Binding-Folding Energy Landscape
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The identification of kinetic pathways is a central issue in understanding the nature of flexible binding.
A new approach is proposed here to study the dynamics of this binding-folding process through the
establishment of a path integral framework on the underlying energy landscape. The dominant kinetic
paths of binding and folding can be determined and quantified. In this case, the corresponding kinetic
paths of binding are shown to be intimately correlated with those of folding and the dynamics becomes
quite cooperative. The kinetic time can be obtained through the contributions from the dominant paths and
has a U-shape dependence on temperature.
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FIG. 1. Illustration of flexible binding (Qb) coupled with fold-
ing or large conformational change (Qf1; Qf2).
Biomolecular recognition is an important issue in mod-
ern molecular biology [1–3]. The conventional wisdom is
that structure determines the functions. In other words, the
molecules have a well-defined shape before interacting
with each other and keep rigid during the binding process.
However, more and more experimental evidence has
shown that some biomolecules cannot be stable alone
without binding to the partners [4–7]. This implies that
significant folding occurs as the binding proceeds.
Therefore binding and folding are intimately coupled.
Here flexibility rather than rigidity is crucial for binding
as well as for biological function [4–7].

To understand the interplay between binding and folding
dynamically, one needs first to have a good description of
the corresponding degrees of freedom. One way to do that
is to employ atomic detailed calculations. This way of
doing it often runs into the trouble of not being able to
sample enough of the configurational space. On the other
hand, it is possible to use a phenomenological approach by
identifying the quasireaction coordinate or order parameter
mimicking the binding and folding process. The approach
used here attempts to study the binding-folding phenomena
common in nature with at least two order parameters, Qb
and Qf. Here Qb is the fraction of native binding spatial
contacts and Qf is the fraction of the native folding spatial
contacts (see Fig. 1 from binding of two proteins where one
protein is rigid but the interface and the other protein is
flexible). This minimal representation is used to study the
thermodynamics of the binding-folding process [7]. It is
found that the folding and binding processes are often
intimately coupled in nature. The crucial question one
needs to address is how the dynamics actually occurs.

Identifying the important dynamic flow of paths that the
binding complex takes to reach the native state is crucial in
uncovering the fundamental kinetic mechanisms of the
binding-folding process and has been a central issue in
the experimental community [8]. So far, very limited ef-
06=96(16)=168101(4)$23.00 16810
forts have been put on the actual kinetic binding intermedi-
ate process or the identification of kinetic paths connecting
the initial and final states [9,10]. We will quantify the
kinetic paths for the flexible binding by developing a
path integral formalism. Path integral formulations have
been developed successfully in studying many different
areas in physics and chemistry [11–14]. The advantage of
this approach is that it addresses the fundamental issues of
kinetic pathways directly. The paths can be identified and
quantitatively determined (See Fig. 2).

Another important question is related to how the many
possible degrees of configuration could fall to the unique
native state basin. The most natural and simple way of
resolving this so-called Levinthal paradox [15] is that the
underlying energy landscape should be funneled to guar-
antee both the thermodynamic stability and specificity
[1,2,16,17]. This should also lead to faster kinetics [18].
Under this funneled energy landscape, in general there is a
dominant flow of paths towards the native state basin. Thus
the kinetics can be obtained through studying the behavior
of the paths. By approximating the path integral using a
dominant-path approach, we will describe with realistic
parameters estimated from the current available data the
1-1 © 2006 The American Physical Society
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FIG. 2. Possible kinetic binding paths from initial to final
configuration (Qi;Qf) and time.
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dynamics and the degrees of cooperativity in the binding-
folding process. The kinetic time scale can be obtained by
summing over the appropriate weighted contributions from
the dominant paths.

To proceed, let us briefly review the formulation of the
thermodynamic energy landscape of the binding-folding
process [2,7]. We first start with the energy function of a
polypeptide chain with an interface. Hf �

P
�fij�

f
ij and

Hb �
P
�bij�

b
ij and total energy is H � Hf �Hb, where

Hf and Hb are the energy functions of polypeptide chain
energy (folding) and interface contacts (binding). The �ij’s
are the contact-energy strengths, while �ij is the contact
variable equal to 1 when there is a spatial contact and zero
when there is no spatial contact within a cutoff distance.

By employing the microcanonical ensemble and ther-
modynamic relationships, we can easily obtain the free en-

ergy of the system: F�Qf;Qb��N�EfQf�CN�EbQb�

NS0�Qf;Qb�T�N
�E2

f�1�Qf��1��fQf�

2kBT �CN
�E2

b�1�Qb��1��bQb�

2kBT ,
where N is the number of the amino-acid residues, �Ef is
the energy gap or bias towards the native folded state, �Eb
is the energy gap or bias towards the native binding state,
and �Ef is the roughness or spread of the folding energy
while �Eb is the roughness or spread of the binding energy.
�f and �b are the inhomogeneity coefficients for folding
and binding. C is the scaling constant measuring the rela-
tive strengths of binding versus folding. S0 is the entropy of
the configurations S0 � ln �.

The entropy function can be fitted with a simple
function by noticing that the entropy of the com-
pletely native folding and binding state S�1; 1� is zero
and the entropy of completely unfolded and unbind-
ing state is S�0; 0�; the entropy of native folded but
completely unbinding state is S�1; 0� and the entropy for
completely unfolded and native binding state is S�0; 1�.
These quantities can all be estimated. So the entropy
function has a form through the interpolation of these
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know entropies: S0�Qf;Qb� � �1�Qf��1�Qb�S�0;0� �
Qf�1�Qb�S�1;0� �Qb�1�Qf�S�0; 1�.

Under the free-energy profiles, the equation of motion
for native contact vector Q � �Qf;Qb� formation can be

formulated as dQ=dt � � @�F�Q�
@Q � �. Because of the long

time scale, the binding-folding motion are overdamped.
Therefore the second derivatives of Q with respect to time t
may be ignored. Here �@�F�Q�=@Q is the gradient force
that the motion of Q vector would follow and � is the noise
term assumed to be Gaussian and uncorrelated in time
(white) for simplicity. The correlation of the noise is given
by h��Q; t���Q; 0�i � 2D�Q���t�. The D�Q� is the
Q-dependent diffusion coefficient tensor (or matrix). The
binding-folding process has many degrees of freedom;
therefore when looking at the motion along the reduced
two-dimensional order parameter or reaction coordinate Q,
there is an effective noise or friction force from the rest of
the other dimensions.

We can now formulate the dynamics for the
probability of starting from initial configuration
Qinitial at t � 0 and end at the final configu-
ration of Qfinal at time t, with the Onsager-Machlup
functional [13] as P�Qfinal; t; Qinitial; 0� �
R
DQ exp ��

R
dt � 1

4
f�dQ=dt���D�Q�@�F�Q�=@Q�g2

D�Q� �

1
2

@D�Q���F�Q�=@Q�
@Q �� �

R
DQexp��

R
L�Q�t��dt�.

The integral over DQ represents the sum over all pos-
sible paths connecting Qinitial at time t � 0 to Qfinal at time
t. The exponential factor gives the weight of each path. So
the probability of binding-folding dynamics from nonna-
tive configurations Qinitial to native configuration Qfinal is
equal to the sum of all possible paths with different
weights. The L�Q�t�� is the Lagrangian or the weight for
each path (Fig. 2).

Notice that not all the paths give the same contribution.
We can approximate the path integrals with a set of domi-
nant paths. Since each path is exponentially weighted, the
other subleading path contributions are often small and can
be ignored. One can easily use this observation to find the
paths with the optimal weights. The dominant paths should
satisfy the Euler-Lagrangian equation (see Fig. 2),
d
dt

@L
@ _Q
� @L

@Q � 0, and the resulting equation becomes
�Q� 1

2
@D�Q�=@Q

D�Q�
_Q2 � 2D�Q� @V�Q�@Q � 0, where V�Q� �

@�F�Q�
@Q

D�Q�
4

@�F�Q�
@Q � D�Q�

2
@2�F�Q�
@Q2 � 1

2
@D�Q�
@Q

@�F�Q�
@Q . The

equation of motion of Q has the acceleration term �Q,
the frictional (positive and negative) term 1

2
@D�Q�=@Q

D�Q�
_Q2,

and the force term 2D�Q� @V�Q�@Q . Define �@U�Q�=@Q �
2D�Q�@V�Q�=@Q. Then the problem becomes one of a
two-dimensional particle moving in a potential wellU with
friction.

When D�Q� is a constant, the friction term is zero. For
simplicity, we assume the diffusion coefficient tensor ma-
trix is diagonal with only two elements (Dff andDbb) pres-
ent, while the nondiagonal elements to account for the
1-2



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Q
f

Q
b III

FIG. 3. Free-energy profile and dominant kinetic paths with
respect to Qf and Qb for more-stable proteins (parameter set I),
and free-energy profile and dominant kinetic paths with respect
to Qf and Qb for more floppy proteins (parameter set II).

FIG. 4. The kinetic time of binding folding versus temperature.
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kinetic coupling between Qb and Qf are zero (Dfb �

Dbf � 0).
We can also write out explicitly the equations of motion

in the scalar form as �Qf � 2Dff
@V
@Qf
� 0 and �Qb�

2Dbb
@V
@Qb
� 0. Notice that the frictional term becomes zero

under the current assumption of a Q-independent diffusion
coefficient.

By solving these two equations with initial points of
Qf � Qb � 0 and end points at Qf � Qb � 1, we can
obtain the dominant-path contribution to the weight of
the paths. By substituting the dominant-path solution
back into the path integral formulation, we can obtain the
expression for the time of the kinetic process from non-
native states to native state.

We have used the results of the bioinformatics survey of
database with 500 binding complexes (the two sets of
parameters) to infer the kinetic mechanism of binding
folding [7]. Our choices of the parameters are as follows:
Set I parameters are for the average proteins often more
stable, and set II parameters are for less stable and more
floppy proteins. The energy gap of folding and binding are
given as �Ef � �11:8 kJ=mol, �Eb � �9:3 kJ=mol
(set I) and �Ef � �10:3 kJ=mol, �Eb � �12:9 kJ=mol
(set II) The other related parameters for inhomogeneity
coefficients �, unfolding and unbinding entropy S�0; 0�,
binding entropy alone S�1; 0�, folding entropy alone
S�0; 1�, the roughness or variance of the energy, and diffu-
sion coefficients D are the same for both set I and set II:
�f � 1:0, �b � 0, S�0; 0� � 3� 9:7

200 kB, S�1; 0� � 9:7
200 kB,

S�0; 1�=S�0; 0� � 0:75, �Ef � 3:4 kJ=mol, �E2
b �

3:4 kJ=mol, Dff � Dbb � 1=s, C � 0:2 [7].
The dominant kinetic paths are shown in Fig. 3 for

different free-energy landscapes with parameter sets I
and II. The underlying landscapes are all downhill and
funneled towards the native state.

We can see clearly that for the parameter set I for the
more-stable proteins, the kinetic process proceeds with a
significant fraction of folding initially and then proceeds
with the completion of the binding process. The path is less
diagonal. The folding and binding are not very strongly
coupled. On the other hand, with the parameter set II for
the more floppy proteins, we see that significant binding
occurs first and then proceeds with folding and binding
together towards the native state. The path is more diago-
nal. So in this case, the folding and binding process are
more cooperatively coupled together. Parameter sets I and
II give different underlying landscapes which determine
different degrees of coupling between folding and binding.
The recent experiments on single molecule flexible binding
[19] show clearly that there are distinct conformational
states of bound and loosely bound states corresponding
to native binding and partially binding states with less
well-defined structures. This implies strong coupling be-
tween binding and folding during the binding complex
formation. Our theory and kinetic path picture qualitatively
provides an explanation for that.
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The kinetics of binding show complex temperature de-
pendence in the folding and binding experiments [8,20].
Very often, the U-shape dependence of the kinetic time on
temperature is found (the Chevron rollover) [8,20,21]. By
varying temperature, the underlying energy landscape
structures can be probed [8]. The kinetic time for binding
is plotted in Fig. 4 versus temperature. The kinetic time is
shown to have a U shape, similar to the experimental
Chevron phenomena for folding [21]. At high tempera-
tures, the native state is unstable so the kinetic time in-
creases with temperature. At low temperatures, local
trapping becomes possible, so the kinetic time decreases
as temperature decreases. This explains why the time has a
U-like shape.
1-3
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Our formalism applies to folding too when we freeze the
binding degree of freedom [22]. The folding alone will also
have the Chevron behavior [21]. Usually it is sharper than
binding. This is because the binding tends to facilitate
folding through the cooperative interactions. The effect
of cooperative interactions tends to make the rollover
shallower than folding alone [21,23]. From another per-
spective, folding represents large conformational change.
It can speed up binding compared with the more rigid or
stable one (Fig. 4). The difference between folding and
binding is mainly the connectivity since the underlying
dominant driving force is quite similar (hydrophobic inter-
actions). Folding can be seen as self-binding. One expects
qualitatively similar although quantitatively different ki-
netic behavior versus temperature.

It is worth pointing out that binding experiments with
wide temperature ranges are hard to perform. More kinetic
experiments are needed and important for exploring the
mechanisms of binding-folding coupling. Furthermore, we
took the average parameters for the quantification of land-
scape from the bioinformatics survey [7]. The individual
protein binding complex can be quite different and shows
different shapes of underlying free-energy landscapes. As a
result, the rollover in Fig. 4 can be different. The rollover
may become sharp for some protein binding complexes
while broad for others. Experimentalists need to choose the
system with care to see this kinetic rollover behavior. We
are working towards an atomic detailed model now to
study temperature dependence of kinetics for specific pro-
teins instead of the qualitative averaged one here.

In Fig. 4, we can also see that the kinetic process is faster
for flexible binding (parameter set II). The more-stable
folding implies that the binding process starts first with
significant folding and then proceeds with binding. So it is
essentially a rigid-binding process. The more flexible bind-
ing implies that significant binding starts first and induces
the folding. The binding and folding are thus intimately
coupled together. So as we have shown here the flexible
binding (binding folding coupled together) has a kinetic
advantage (faster) over rigid binding (folding first and then
binding). Binding with large conformational changes helps
to reach the kinetic specificity rather than the rigid one.
This is due to the larger capture radius for the flexible
binding. It is analogous to fly casting in fishing [7]. This
suggests a new set of experiments to test the mechanism of
flexible binding.

It is worth pointing out that the binding involves two
molecules and the reaction is bimolecular. Kinetics is in
general concentration dependent. Our study here should be
considered as the saturation limit where the concentration
becomes constant. Another effect of nonadditive coopera-
tive interactions from solvents can also be incorporated
into the current formalism. These are topics for future
study.
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