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Spin-Wave Interference in Microscopic Rings
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We have studied the spin excitations of ferromagnetic rings and observed a distinct series of quantized
modes in the vortex state. We attribute them to spin waves that circulate around the ring and interfere
constructively. They form azimuthal eigenmodes of a magnetic ring resonator which we resolve up to the
fourth order. The eigenfrequencies are calculated semianalytically and classified as a function of magnetic
field by a quantization rule which takes into account a periodic boundary condition. Strikingly each mode
exists only below a characteristic field.

DOI: 10.1103/PhysRevLett.96.167207 PACS numbers: 75.40.Gb, 75.75.+a, 76.50.+g
When the lateral dimensions of a microstructured ferro-
magnet are on the order of the spin-wave wavelength �, the
geometrical boundaries impose a quantization condition
for excitations. This has been found experimentally for
straight micromagnets such as wires or rectangular prisms
[1–7]. Curved ferromagnetic devices have recently at-
tracted considerable interest due to flux-closure states
with vanishingly small stray field and the circular symme-
try of magnetization [8,9]. Quantization phenomena for
disks in the vortex state [10] are, however, complex: due
to the presence of a vortex core radial and azimuthal nodes
do not, in general, represent good quantum numbers. A
clear separation in radial and azimuthal spin waves [11–14]
is not always possible [10] and the calculation of the
eigenmodes and eigenfrequencies is involved [15–17].

We have investigated nanostructured permalloy
(Ni80Fe20) rings which are in the vortex state [8] and where
the core is removed. We observe quantized azimuthal spin
waves up to the fourth order. They appear in a stepwise
manner with overall negative magnetic field dispersion
when we increase the applied magnetic field H. Our semi-
analytical calculations show that the steps originate from
backward volume magnetostatic waves [18] which inter-
fere around the ring. For each eigenmode an upper critical
field exists. With increasing H in the vortex state, a further
mode appears with positive magnetic field dispersion
showing no discrete steps. This behavior is due to a local-
ization phenomenon. Our observation that for propagating
spin waves a ring acts as a ring resonator with quantized
azimuthal modes is stimulating for both further fundamen-
tal spin dynamics research [19] and magneto-logical ap-
plications [20].

The fabrication of rings on the signal line of coplanar
waveguides (CPWs) using electron beam lithography and
lift-off processing has been described elsewhere [21,22].
We investigated three arrays which consisted of permalloy
rings with similar width w � 600 nm and outer diameter
2R � 2000 nm but had (i) different thickness t, (ii) dif-
ferent ring-to-ring separations and (iii) a different number
06=96(16)=167207(4)$23.00 16720
of rings. They all displayed the same characteristics in the
vortex state on which we report. Only the absolute values
of the measured spin-wave eigenfrequencies varied (as
expected, e.g., from the different thickness). We focus
here on the data of one sample. It consisted of 750 nomi-
nally identical rings with 2R � 1950��30� nm, w �
600��30� nm, and t � 30��6� nm. The geometric pa-
rameters were determined by atomic force microscopy
(AFM). The ring-to-ring separation of 2 �m excluded
dipolar interaction [23]. Transmission spectra are mea-
sured at room temperature by means of a vector network
analyzer connected to the CPW. The sinusoidal output
signal of power 1 mW causes a high-frequency magnetic
fieldHrf surrounding the central conductor of the CPW and
acting mainly in the plane of the rings. A static external
magnetic field �0H is applied parallel to the CPW and
orthogonal to Hrf . Following Refs. [10,14] Hrf leads to a
spatially inhomogeneous torque ~m� ~Hrf in the vortex
state [cf. Figure 3(a)]; i.e., spin-wave excitation is
inhomogeneous.

In Fig. 1 we summarize a series of absorption spectra
taken at different in-plane fields �0H ranging from�60 to
�60 mT. At each field the spectrum was recorded after
applying a saturation field of �90 mT. The rings exhibit
the typical reversal behavior with two irreversible switch-
ing processes [23,24]: for �0H 	 �0H

sw
1 � �2 mT the

rings are in the onion state. Lowering H below Hsw
1 makes

the rings switch to the vortex state. The absorption char-
acteristics change significantly. The vortex configuration is
stable down to �0Hsw

2 � �18 mT. For H 
 Hsw
2 rings

form the reversed onion state. The three separate regimes
of dynamic response have already been reported for
250 nm wide rings [21]. Modes A and B, which are
observed at high field in the onion state (see labels in
Fig. 1), have already been explained by localized spin-
wave excitations [21–23]. Mode A resides in ring seg-
ments where the external field is oriented tangentially to
the ring, and mode B in domain walls. These localized
modes at high field will not be discussed.
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FIG. 1. Gray-scale plot of absorption spectra taken at succes-
sively decreased magnetic field (cf. dashed arrow) after satura-
tion at �0H � �90 mT (onion state). Dark represents strong
absorption. In the onion state modes A and B are detected
consistent with Ref. [21]. In the vortex state discrete spin-
wave eigenfrequencies I1; I2; I3; I4 (see labels) and A0 are re-
solved (cf. also Fig. 2). Black solid vertical lines indicate
switching fields.
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The intriguing novel observation in this work is the
stepwise behavior in the vortex state (labeled by In with
n � 1; 2; 3; 4). Here, spin-wave eigenfrequencies are dis-
crete and form plateaus In which are found to be slightly
magnetic field dependent. Clear frequency gaps of �
500 MHz are resolved between the steps In. This interest-
ing behavior is best seen in the minor loop of Fig. 2. For
this, we have first saturated the rings at �90 mT and
second applied �0H � �14 mT (cf. HML in Fig. 1) thus
generating the vortex state. The regime of the vortex state
can be identified easily: the spin-wave modes show a
mirror symmetry with respect to H � 0 as argued in
Ref. [21]. ForH � 0 only mode I1 is resolved at frequency
f � 7:04 GHz. Each of the spin-wave excitations is de-
tected within a characteristic field interval. The onset fields
of modes In with n � 2, 3, and 4 are 4, 8, and 9 mT,
FIG. 2. (a) Gray-scale plot of spectra taken in the minor loop
starting at �14 mT. Dark represents strong absorption. The
contrast for 10 GHz 
 f 
 13:2 GHz is increased. (b) Full
symbols are eigenfrequencies extracted from the individual
absorption spectra. Open circles refer to the quantized modes
calculated via Eq. (1). Numbers in brackets label the modes
(m; n) from the semianalytical calculations.
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respectively. The modes exist up to a critical field Hc;n:
we find�0Hc;1 � 9 mT for mode I1,�0Hc;2 � 13 mT and
�0Hc;3 � 15 mT. The critical field increases with increas-
ing index n. At the same time the eigenfrequency de-
creases. The mode which is labeled by A0 in Figs. 1 and
2 is not resolved for �4 mT<�0H <�4 mT and shows
no discrete steps. At high frequency we detect two addi-
tional modes of low signal strength which cross at
11.8 GHz in the remanent vortex state.

For the discussion let us first describe the details of our
calculations. To recalculate the spin dynamics of rings we
make use of the circular magnetization configuration as
shown in Fig. 3(a). We adopt the notation from Ref. [10]
and index the spin waves by the integer number of nodal
lines m and n along the radial ~er and azimuthal ~e� direc-
tions, respectively. The total wave vector K can then be
decomposed by K2 � k2

r � k
2
�, defined in Fig. 3(b). In

radial direction due to the geometric ring borders a quan-
tization condition is anticipated for kr which is very similar
to the one of a longitudinally magnetized wire [1,6,7]. This
leads to discrete values kr � kmr. Important for this work is
the azimuthal component k� which is parallel to the ring’s
magnetization and represents a backward volume magne-
tostatic wave (BVMSW). Here we argue that a quantiza-
tion for the ring’s azimuthal mode arises if

n2� �
I
k��f;Hint����rd� (1)

is fulfilled, where r is the radius of the integration path and
Hint the internal field, which includes the external, demag-
netizing and effective exchange field. We will show later
that for H � 0, Hint varies characteristically along �.
Then, the wave vector k���� � k��f;Hint���� changes
with � through the variation of Hint. Equation (1) is the
condition for constructive interference and ensures that a
spin wave exhibits the same phase after propagating
around the ring. In the following we outline how we
recalculate the eigenfrequencies fn using the quantization
condition Eq. (1) and how we consider the finite external
field H.
FIG. 3. (a) Symmetry of the experiment: ~Hrf and the external
field ~H are orthogonal. Small arrows indicate the local magne-
tization ~m in the ring’s vortex state. (b) Definition of parameters.
(c) Spatial profile of the internal field Hint as a function of �.
H � 0 leads to a spatially oscillating field Hint, calculated by
micromagnetic simulations [28] (open symbols) and modeled by
Hint � �H cos� (solid line).
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FIG. 4. (a)–(c) Wave vector dispersions for BVSMW’s (m �
0) at azimuthal positions � � i�

6 with i � 0; 1; 2; . . . ; 6 and at
external magnetic fields �0H of 0 (a), 4 (b), and 15 mT (c). A
dispersion band forms for H � 0. Horizontal lines indicate
modes In (n � 1; 2; 3; 4) and mode A0. Vertical lines mark the
specific wavelengths which fit n times into the ring at H � 0,
i.e., kn� � n=RC on the top axis. In (d)–(e) the corresponding
wave vectors are plotted against the azimuthal position �
reflecting the variation of Hint.
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If we neglect the exchange energy in the remanent
vortex state the ring is mathematically equivalent to a
longitudinally magnetized wire which has no demagneti-
zation field at the front and back end and which exhibits
periodic boundary conditions along the long axis.
Considering these characteristics one can use the disper-
sion relations f�K;Hint� of Ref. [6] to calculate spin-wave
excitations for a longitudinally magnetized wire forming a
ring. The important difference to the straight wire occurs if
one applies a magnetic field H to the ring: Hint becomes a
spatially oscillating function. To keep the analysis simple,
we focus in the following on the azimuthal direction � at
r � RC [compare Fig. 3(b)]. Open symbols in Fig. 3(c)
refer to a micromagnetic simulation of the internal field
[25]. As can be seen, the functional form Hint � �H cos�
(solid lines) remodels the simulated internal field very
well. This analytical form is a good approximation if at
small field H deviations from the circular symmetry in
Fig. 3(a) are negligible. The sign of the internal field is
defined by the magnetization orientation: Hint is negative
(positive) for an antiparallel (parallel) alignment of ~M and
~H. Considering this Hint � �H cos� in the formalism of

the wire, we can then calculate the wave vector dispersion
f�kmr; k�;Hint� using Eqs. (7), (10), and (11) in Ref. [6] for
different applied fieldsH [26]. Introducing position depen-
dent wave vectors k� at r � RC into Eq. (1) then defines
the eigenfrequencies of the vortex state as outlined in detail
later. The results of the semianalytical calculations are
shown in Fig. 2(b) as open circles. The frequency gaps of
about 500 MHz and the discrete spin-wave excitations In
are reproduced very well. For the calculations we assumed
2R � 1920 nm, w � 630 nm and t � 26 nm in excellent
agreement with the AFM measurements. For the gyromag-
netic ratio we took � � 28 GHz

T . The saturation magneti-
zation �0MS � 1120 mT was determined by ferromag-
netic resonance measured on a reference film prepared in
the same evaporation process. The good agreement be-
tween calculations and experiment in Fig. 2(b) already
demonstrates that, in contrast to a disk [11,13], which is
a topographically simply connected object, in rings the
separation into azimuthal and radial modes is stringent.
BVSMW’s are guided around the ring and interfere.

To discuss the quantization phenomenon in detail let us
refer to Fig. 4. Again it is instructive to start with H � 0
where the internal field is zero everywhere and the disper-
sion of the BVSMW is not position dependent. This sim-
plifying case is shown in Figs. 4(a) and 4(d) where we
assume for the radial direction m � 0. The wave vectors
consistent with Eq. (1) are constant around the ring and are
given by kn� � n=RC. For the line integral we assumed the
central line with radius RC � R� w

2 [cf. Figure 3(b)]. The
corresponding frequencies labeled by In exhibit the gaps of
about 500 MHz. At finite fields the dispersion of the
BVSMW is position dependent and we obtain a band of
dispersions. The case for �0H � 4 mT is shown in
16720
Fig. 4(b) where we depict dispersions for selected � � i�
6

with i � 0; 1; 2; . . . ; 6. The lower and upper ‘‘band edges’’
are given by the minimum and maximum internal field at
� � 0 (i � 0) and � � � (i � 6), respectively. The band
broadens almost symmetrically around the dispersion of
Hint � 0. Graphically, wave vectors kn���� are found as
intersections of the horizontal frequency lines In with the
dispersions. The wave vectors which are consistent with
Eq. (1) at 4 mT are depicted in Fig. 4(e). In particular, they
now vary with �. With higher magnetic field the position
dependence of kn���� becomes more and more pro-
nounced [Fig. 4(f)]. Because of the broadening of the
dispersion band with increasing H the eigenfrequencies
fn become dependent on the applied field [cf. Figure 2(b)].
The overall variation however is small as the broadening is
found to be rather symmetric.

The dispersion band at �0H � 15 mT in Fig. 4(c) ex-
plains why the spin-wave excitations are observed only
below an upper critical field. The BVMSW must exist
everywhere in the ring. For this the frequency lines In do
first have to intersect all dispersion relations of the band
and second have to fulfill Eq. (1). These criteria are true for
I3 and I4 at �0H � 15 mT. Below k3���� in Fig. 4(f),
however, no further wave vectors are found which are
consistent with both requirements. BVMSW modes with
n � 1 and n � 2 have vanished. The model thus correctly
predicts upper critical fields Hc;n. They increase with in-
creasing mode number n. The calculated modes shown as
open symbols in Fig. 2(b) exist over the whole interval
��Hc;n;�Hc;n, whereas we observe onset fields for n 	 2
7-3
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in the experiment. The calculations, however, do not in-
clude the specific excitation mechanism. The high-
frequency field Hrf is homogeneous in the rings’ plane.
To excite BVMSWof high wave vectors kn� with n 	 2 an
inhomogeneous internal field Hint or a spatially inhomoge-
neous magnetization are needed. To generate this, we have
to apply a finite field leading to the experimentally ob-
served onset field. Following Refs. [14,27] we are not able
to excite the uniform azimuthal mode �m; n� � �0; 0�
[cross at 7.26 GHz in Fig. 2(b)] with k� � 0 due to both
the symmetry of the vortex state and the orientation of Hrf .

To explain mode A0 in the vortex state we start from the
measured frequency f � 8:1 GHz at �0H � 15 mT. In
Fig. 4(c) this frequency lies at the upper edge of the
dispersion band. k���� shown in Fig. 4(f) suggests that
mode A0 is localized near � � � since real values for the
wave vector exist only for �� �

10 <�<�� �
10 . The

corresponding localization length amounts to 420 nm.
Because of the localization spin-wave interference around
the ring is not possible and discrete steps are not expected
in the magnetic field dispersion. This is in agreement with
the experimental data. Mode A0 is similar to mode A in the
onion state which was discussed in Refs. [21–23]. As the
magnetization pattern and the internal field change be-
tween the vortex and the onion state this characteristic
spin-wave excitation shifts to a different eigenfrequency.
We note that mode A0 does not exist for�4 mT<�0H <
�4 mT in Fig. 2(b) and that the linear magnetic field
dependence does not extrapolate to the uniform mode
�0; 0� at H � 0. This characteristic behavior needs further
theoretical elucidation.

In the remaining paragraph we discuss the modes cross-
ing at 11.8 GHz in Fig. 2(a). Here, our model suggests
circulating (lower branch) and localized (upper branch)
spin waves with two nodes, i.e., m � 2, in the radial
direction. The calculated eigenfrequency of mode �m; n� �
�2;�1� at H � 0 is shown as an open triangle in Fig. 2(b)
and consistent with the data. We find that the BVMSW
dispersions for m � 2 are flat (not shown), and that the
calculated frequency gaps amount to only 100 MHz for
increasing n and H. The low signal-to-noise ratio might
have obscured the small gaps in the upper panel of
Fig. 2(a). The width w � 600 nm used in this study thus
was in a suitable regime to make the quantization of
BVMSW’s observable for m � 0.

In conclusion, we studied the spin dynamics of permal-
loy rings in the vortex state. Interfering spin waves formed
the azimuthal eigenmodes. They were modeled by
BVMSW’s propagating along the ring and fulfilling a
quantization condition. Consequently, a magnetic ring con-
stitutes a microresonator for spin waves. The observations
open new experimental perspectives for the spin-wave
physics predicted in devices with topologically nontrivial
magnetization profile [19,20].
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