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Signature of the Ground-State Topology in the Low-Temperature Dynamics of Spin Glasses
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We numerically address the issue of how the ground-state topology is reflected in the finite temperature
dynamics of the �J Edwards-Anderson spin glass model. In this system a careful study of the ground-
state configurations allows us to classify spins into two sets: solidary and nonsolidary spins. We show that
these sets quantitatively account for the dynamical heterogeneities found in the mean flipping time
distribution at finite low temperatures. The results highlight the relevance of taking into account the
ground-state topology in the analysis of the finite temperature dynamics of spin glasses.
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Spin glass models are the paradigm of disordered sys-
tems with slow dynamics [1–3]. The main ingredients
which define these models are quenched disorder and an
inherent frustration in the interactions. These ingredients
lead to a nontrivial ground-state topology [3], and slow
dynamics with spatial and dynamical heterogeneities [4–
10]. Works analyzing the out-of-equilibrium properties
have intuitively suggested a relation between dynamical
heterogeneities and the ground-state topology [4,11,12].
However, a quantitative understanding of this precise rela-
tion still remains an open question.

In particular, recent works [8,9] have analyzed the dy-
namical heterogeneities found in three different heteroge-
neous spin models. By studying single spin dynamics
different qualitative behaviors were observed. On the other
hand, other studies [5–7,10] have focused on spatially
coarse grained quantities and analyzed heterogeneities
within a given coarse grained length.

In this work we take into account a global property,
dictated by the ground-state topology, in order to analyze
dynamical heterogeneities. We establish for the first time a
quantitative relation between the ground-state topology
and the finite temperature dynamical properties of a spin
glass model. We find that the dynamical heterogeneities are
well accounted for by two sets of spins characterized by
their role in the ground state.

We consider, in particular, the two-dimensional �J
Edwards-Anderson (EA) spin glass model. In this model
there exist clusters of spins which maintain their relative
orientation for all configurations of the ground-state mani-
fold [13–15]. We extend this ground-state information to
analyze the behavior of the system at finite temperatures.
In order to do this we divide the system into two sets of
spins: solidary spins, i.e., the spins that form these clusters,
and nonsolidary spins. The consequences of this division
are twofold. On one hand it gives us a quantitative tool to
establish a relation between the ground-state topology and
the finite temperature dynamical properties. On the other, it
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gives an intuitive physical frame in which to interpret the
results.

We begin our analysis considering the spin autocor-
relation function, which clearly illustrates the different
qualitative behaviors observed when the proposed division
is taken into account. The nonsolidary spins decorrelate
faster than solidary spins, which suggests a relation with
the separation in fast and slow degrees of freedom. In order
to address this point we analyze the time scale separation
as observed in the mean persistence time and mean flipping
time probability distribution functions [4,16]. We show
that the observed time scale separation can be quantita-
tively accounted for by the two sets of spins.

We consider the two-dimensional�J EA model for spin
glasses [1–3], defined on a square lattice with periodic
boundary conditions. The Hamiltonian of the model is

H �
X

hi;ji

Jij�i�j; (1)

where �i � �1 is the spin variable and hi; ji indicates a
sum over nearest neighbors. The coupling constants Jij �
�J are random variables chosen from a bimodal distribu-
tion. The time evolution of the model is governed by a
standard Glauber Monte Carlo process with sequential
random updates.

In this model there exists clusters of solidary spins
which maintain their relative orientation for all configura-
tions of the ground-state manifold [14,15]. This backbone
can be detected for each sample through the identification
of the diluted lattice [17,18], or its generalization, the rigid
lattice [15]. The latter is formed by those bonds which are
always satisfied or always frustrated in the ground-state
manifold. Notice that a backbone is also present in other
systems such as the K-satisfiability model [12,19].

A particular sample of size N can be characterized by
recognizing all its solidary spins as shown in Fig. 1. In
order to obtain a statistical average over different realiza-
tions of bond disorder, in all the results presented we have
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FIG. 2. Autocorrelation function C for tw � 104 and T � 0:5.
The full line shows the behavior of C when all spins are taken
into account. Closed (open) circles correspond to the behavior of
the correlation Cs�Cns� when only solidary (nonsolidary) spins
are considered.

(a) (b)

FIG. 1. (a) A particular realization of bond disorder in an 8�
8 lattice. Single (double) lines indicate ferromagnetic (anti-
ferromagnetic) bonds. (b) The corresponding rigid lattice (back-
bone). Full (dotted) lines indicate interactions which are always
satisfied (frustrated) in the ground-state manifold. The solidary
(nonsolidary) spins are indicated with closed (open) circles.
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calculated the sets of solidary spins for 2000 different
samples in systems with size 16� 16. All mean values
are obtained from averages with respect to both realiza-
tions of bond disorder and thermal histories, as in Eq. (2).

We begin our analysis of the out-of-equilibrium proper-
ties by considering the two-time autocorrelation function,

C�tw; t� �
1

N

XN

i�1

�h�i�tw��i�t�i�; (2)

which measures the overlap of the spin configurations at
times tw and t [20]. The brackets �. . .� indicate an average
over different realizations of bond disorder, while h. . .i is a
thermal average, i.e., an average over different initial con-
ditions and realizations of the thermal noise. In each initial
condition the spins take random values �i � �1, which
corresponds to a quench at t � 0 from T � 1 to the
temperature T at which the system is analyzed. It is worth
stressing that usually one is interested in studying the out-
of-equilibrium properties below the critical temperature
Tc. However, in the two-dimensional EA spin glass model
Tc � 0 [21,22]. Nevertheless, it is widely accepted that for
low enough temperatures, the dynamics remains out of
equilibrium at short times and is very similar to the one
observed in three-dimensional spin glasses [12,23].

For each realization of bond disorder the division in
solidary and nonsolidary spins can be taken into account
rewriting the sum in Eq. (2) as C�tw; t� � fsCs � fnsCns,
where fs (fns � 1	 fs) is the fraction of solidary (non-
solidary) spins, and Cs (Cns) is the two-time autocorrela-
tion function restricted over the solidary (nonsolidary)
spins. Note that the fraction of solidary spins is approxi-
mately 67% of the total number of spins [21]. Figure 2
shows the behavior of C�tw; t� vs t	 tw when T � 0:5 and
tw � 104. For this parameters the system is in the aging
regime [23], and similar qualitative results are obtained for
lower temperatures. The full line corresponds to the be-
havior ofCwhen all the spins are considered. The behavior
ofCs (Cns) is indicated with closed (open) circles. For short
times (t	 tw < 10) the solidary spins are strongly corre-
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lated, i.e., they maintain their relative orientation in time.
The nonsolidary spins present a qualitatively different
behavior, with a faster decay of the correlation function.
Only those spins which are solidary in the ground state tend
to remain correlated in time at finite temperatures. For long
times (t	 tw > 103) each set of spins presents the same
qualitative decay as the whole system. This shows that the
relaxation times of a fraction of nonsolidary spins is
coupled to the ones of solidary spins thus decorrelating
together at longer times. This behavior suggests a strong
separation in characteristic times for the two sets of spins
and a possible path to analyze dynamical heterogeneities as
previously observed in Ref. [4].

One possible path to the analysis of dynamical hetero-
geneities is through the mean persistence time probability
distribution function (PDF). This quantity depends on the
time window of interest, given by tw and t, and is defined as
the time at which, in average, a given spin changes its state
for the first time with respect to its state at tw. The mean
persistence time, �p, is obtained for every spin and the
corresponding PDF is constructed, Pp�ln�p�. The ln�p
scale is preferred due the broadness of the PDF.

In Fig. 3 the behavior ofPp�ln�p� is shown. The symbols
are the same as in Fig. 2. The PDF of the whole system (full
line) presents a sharp peak around ln�p 
 7 (�p 
 103),
with a pronounced shoulder for lower times. It is worth
stressing that there exists a direct relation between the
mean persistence time PDF and the autocorrelation func-
tion. For short times, the position of the shoulder, ln�p 
 2
(�p 
 10), corresponds to the first decay observed in the
full C, while for long times, the position of the peak
coincides with the second decay observed in the full C.
The division in solidary and nonsolidary spins allows for a
physical interpretation of this time scale separation. In
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FIG. 4. Mean flipping time PDF for the time window t	 tw �
104 with tw � 104 and T � 0:5. The whole distribution (full
line) is divided in the PDF of the solidary (closed circles) and
nonsolidary (open circles) spins. The power-law like behavior of
the distribution’s tails is highlighted. The inset shows the be-
havior of the maximum of the solidary (nonsolidary) spins PDF,
ln�fmax 2 �ln�fmax1� , for three different temperatures: T � 0:4,
0.5, and 0.6.
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FIG. 3. Mean persistence time PDF for the time window t	
tw � 104 with tw � 104 and T � 0:5. The whole distribu-
tion (full line) is divided in the PDF of the solidary (closed
circles) and nonsolidary (open circles) spins.
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Fig. 3 we show the mean persistence time PDF for solidary
and nonsolidary spins separately. We observe that the
shoulder found in the full PDF is given only by a contri-
bution of the nonsolidary spins. On the other hand, both
solidary and nonsolidary spins contribute to the sharp peak.
The interpretation is straightforward: A fraction of non-
solidary spins decorrelate first due to their low mean
persistence time. At higher times the remaining fraction
of the nonsolidary spins and the solidary spins decorrelate
together, both having similar mean persistence time. The
same relation between the mean persistence time PDF and
the autocorrelation function was observed for lower tem-
peratures, giving support to our interpretation.

We expect this particular separation in solidary and
nonsolidary spins to be reflected in other finite tempera-
ture dynamical quantities. Recently, Ricci-Tersenghi and
Zecchina [4] have observed a strong time scale separation
in the mean flipping time PDF, Pf, as a signature of dy-
namical heterogeneities. We analyze this quantity using the
ground-state information. Pf is obtained by measuring the
number of flips (Nflips) done by every spin within the time
window extending from tw to t. The mean flipping time �f
for a given tw and t is defined as the time window size
divided by the number of flips: �f � �t	 tw�=Nflips [4].

Figure 4 shows the behavior of Pf�ln�f�. The symbols
are the same as in Fig. 2. The PDF of the whole system (full
line) presents two main peaks [4], which are a manifesta-
tion of strong dynamical heterogeneities [24]. Generally
speaking, these two peaks correspond to fast (left peak) and
slow (right peak) spins. We also measure the mean flipping
time distribution for solidary and nonsolidary spins sepa-
rately. In Fig. 4 we show that the two peaks of the full PDF
can be well accounted for by this separation. The slow
(fast) spins at finite temperature correspond to solidary
(nonsolidary) spins. At high temperatures, the two peaks
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collide and the strong time scale separation is no longer
observable.

It is worth stressing that this separation reveals that a
further internal structure is present, as can be seen in the
shoulder observed in the mean flipping time PDF of the
solidary spins in Fig. 4. For low temperatures we observed
that the shoulder does not seem to depend on temperature.
Instead, the peak of the slow spins moves to higher values
in accordance with an activation process with a character-
istic energy barrier (see inset in Fig. 4). This energy barrier,
4J, corresponds to flipping a spin with only one frustrated
bond. This should be contrasted with the fact that the peak
of the fast spins does not move with temperature as shown
in the inset. However, we must point out that a possible
difference could be present in the tails of the distributions.
For both fast and slow spins, the tails seem to be power-
law-like, pf��f� 
 �	1:7

f .
Summarizing, we have presented a numerical study of

the two-dimensional �J EA spin glass focusing on how
the information of the topology of the ground-state mani-
fests in the finite low-temperature dynamics. We have
concentrated in the preasymptotic aging regime of this
particular model as representative of glassy dynamics.

In the ground state, spins can be divided in two sets,
solidary and nonsolidary spins. In the EA model, this
characterization is nontrivial and deserves careful and
time consuming simulations [18]. Once these two sets
were identified, we analyzed the contribution of each set
to the finite temperature dynamics. The autocorrelation
function for each set of spins behaves differently, showing
a faster initial decay for nonsolidary spins. This naturally
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leads to the analysis of dynamical heterogeneities. First,
we analyze the mean persistence time distribution, and
show that it is intimately related to the two-step relaxation
of the autocorrelation function. A fraction of nonsolidary
spins, with lower mean persistence times, give rise to the
first decay of the autocorrelation function. The decay
observed at longer times corresponds to a peak in the
mean persistence time distribution and is shared by solid-
ary and nonsolidary spins.

Finally, we test the relevance of the separation in solid-
ary and nonsolidary spins in the mean flipping time distri-
bution, which presents strong dynamical heterogeneities.
As was already pointed out in Ref. [4] this distribution
presents two sharp peaks. This time-scale separation was
used to dynamically define groups of slow and fast spins
[4]. Here we show for the first time that this dynamical
characterization is well accounted for by the ground-state
characterization in solidary and nonsolidary spins. Further-
more, new interesting and promising questions arise. For
instance, the mean flipping time distribution for solidary
spins presented in Fig. 4 presents a clear shoulder at low
mean flipping times. This shoulder corresponds to an in-
ternal structure within the set of solidary spins. This sug-
gests that a further division into subsets could refine our
results, and should be of relevance for understanding het-
erogeneities in EA spin glasses with continuous coupling
distributions.
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Physica A (Amsterdam) 336, 454 (2004).
[19] R. Monasson and R. Zecchina, Phys. Rev. E 56, 1357

(1997).
[20] L. F. Cugliandolo in Slow Relaxations and Nonequilibrium

Dynamics in Condensed Matter, edited by J.-L. Barrat
et al. (Springer, Berlin, 2002).
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