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Mesoscopic versus Macroscopic Division of Current Fluctuations
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We investigate the current shot noise at a three terminal node in which one of the branches contains a
noise generating source and the correlations are measured between the currents flowing through the other
two branches. Interestingly, if the node is macroscopic, the current correlations are positive, whereas for a
quantum coherent mesoscopic node antibunching of electrons leads to negative correlations. We present
specific predictions which permit the experimental investigation of the crossover from the quantum
mechanical noise division to the macroscopic noise division.
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Introduction.—Over the past two decades the theoretical
and experimental investigation of the noise properties of
small conductors has developed into a major field of re-
search in mesoscopic physics. Fundamentally, shot noise is
a consequence of the granularity of charge and quantum
diffraction [1]. In quantum coherent conductors shot noise
arises whenever there are multiple final states for a given
incident state. For purely elastic scattering, for conductors
embedded in a zero-impedance external circuit, the Pauli
exclusion principle leads to negative current correlations
independent of the shape and form of the conductor [2].
Negative current correlations have been measured at beam
splitters and in quantum Hall effect geometries [3—5]. If
the occupation of the incident channel is small and ap-
proaches a Maxwell-Boltzmann distribution, the current
correlations vanish [5].

In contrast, positive correlations are known to occur due
to interaction in superconducting-normal hybrid structures
[6], in ferromagnetic spin controlled hybrid structures
[7,8], or in normal conductors due to dynamical screening
[9,10]. However, recently Texier and Biittiker [11] pre-
dicted positive correlations in the white noise limit of
purely normal conductors for a geometry [5] in which
edge states are coupled to a voltage probe. The correlations
change sign as the coupling to the voltage probe increases.
A recent experiment by Oberholzer et al. [12] is in excel-
lent agreement with theory. Wu and Yip [13] investigate
the sign of correlations in mesoscopic Y structures in
which one of the branches is coupled to a large resistor.
It is clearly of interest to know to what extent special
geometries are necessary for the observation of positive
correlations in purely normal conductors.

In this Letter we point out that under very general
conditions there exists a quantum mesoscopic to macro-
scopic crossover in purely normal conductors which mani-
fests itself in the change of sign of current correlations.
Figure 1(a) depicts a node of a macroscopic conductor in
which one of the branches with conductance G, contains a
source giving rise to shot noise. The two resistors on the
other branches are macroscopic resistors which generate
no shot noise. At the node, the electrostatic potential U(r)
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must fluctuate, to ensure conservation of currents. The
fluctuating potential acts in a collective way on electronic
carriers, correlating the currents in the branches. As a
consequence, such a classical circuit exhibits positive cor-
relations. In marked contrast, in the mesoscopic conductor
[see Fig. 1(b)] carriers at different energies and in different
quantum channels are uncorrelated. Accordingly, a carrier
exiting through a channel in one of the leads, leaves an
empty state in the other outgoing channels, and as a con-
sequence the current correlations are negative.

The transition from mesoscopic noise division (with
negative current correlations) to macroscopic noise divi-
sion (with positive current correlations) can be investigated
in a wide range of structures. It rests only on the property
that correlations induced by voltage fluctuations can over-
whelm correlations due to the Pauli principle.

Macroscopic versus mesoscopic noise division.—The
classical node [see Fig. 1(a)] consists of three branches
with conductances G,. A voltage V is applied to lead 1
and the others are grounded. The conductor 1 generates
shot noise with a power p; = 2 [d«i,()i;(0)). The fluc-
tuating current through this conductor is Al (r) = i,(r) —
G,8U(z). The conductors 2 and 3 are macroscopic and
generate no shot noise. Thus in the zero-temperature limit

a) Macroscopic b) Mesoscopic

i(t) G G h

G;

GZ U(t) G3 G2

FIG. 1. Macroscopic and mesoscopic division of shot noise.
The macroscopic classical circuit of Fig. 1(a) contains one
source of noise i;(¢). Fluctuations induced by this source give
rise to a positive current correlation between currents at leads 2
and 3. Figure 1(b) represents a mesoscopic conductor which
exhibits negative correlations. G; are contact conductances.
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(which we consider from now on) the fluctuating current
in these branches is AI;(r) = —G;8U(z), where U(r) is
the voltage at the node. From Kirchhoff’s law it fol-
lows immediately that the current correlation P,; =
[ d{ATL(t)AI5(0)) at contacts 2 and 3 is
Ggf p1>0, (1)
3

Py =

where Gy = >;G;. In contrast, a mesoscopic quantum
coherent conductor [1,2] is described by scattering matri-
ces s;; which give the current amplitudes in contact i as a
function of the incident current amplitudes in contact j.
With the Fermi distribution in contact 1 denoted by f; and
the Fermi distributions in contact 2 and 3 by f, the current
correlations are [2]

P 2¢2
23 I

dEu[BLBx](f1 = fo)* =0. ()
where By; = sy STS and the trace is over quantum channels
(transverse modes). In fact the correlations of a quantum
coherent conductor are negative independent of geometry
and temperature, number of contacts, etc. The goal of our
work is to develop a theory which connects the results of
Egs. (1) and (2).

Energy conserving transport.—As a generic example, it
is instructive to consider next a chaotic cavity [14-16]
connected via contacts with conductance G; to reservoirs.
We assume that quasielastic scattering is sufficiently strong
such that quantum interference effects are completely
washed out [17-19]. Since scattering is isotropic, the state
of the cavity can be characterized by the distribution
function f.(E). This distribution can be found from current
conservation which for quasielastic scattering must hold at
each energy. The time-averaged spectral current at contact
i is I,(E) = G|[fi(E) — f.(E)] and from 3 ,I;(E) = 0 we
find [17]
Gif1(E) + (G, + G3)fo(E)

f(E) = Ge . 3)

Consider next the fluctuations away from the average
current densities. Contact i with G; = (¢*/h)Y’, T, where
T! is the transmission probability of the nth scattering
channel, generates noise [1,2,20] with a power p;,

pi = 26, f dELF.(1 = £+ Filfi— f02 @)

where F; =3, Ti(1 — T})/S T} is the zero-temperature
Fano factor of contact i. Here and in the following we have
assumed energy independent transmission probabilities.
The total spectral current fluctuations AZ;(E, r) are com-
posed of two contributions. The first contribution i;(E, )
is the current fluctuation of a conductor with time-
independent distribution functions f; and f.. A second
contribution G;6f.(E, t) arises from the fact that the dis-
tribution function f,. must fluctuate to conserve current at

every instant of time. Thus the total fluctuating spectral
current at contact i is

AIL(E t) = i;(E, 1) — G;6f.(E, 1). (5)

Using the conservation of current fluctuations
SL/AL(E,t) =0 we obtain 8f. = (i; + i, + i3)/Gs.
Thus the A7; can be expressed in terms of the fluctuations
of i; alone and since the noise sources i; of different con-
tacts are independent [18,19] the current cross-correlations
depend only on the autocorrelations, Eq. (4). In particular
for the current-correlation P,3; = [d{(AL(t)AI5(0)) at
contacts 2 and 3 we find

_ GyG3py = G3(Gy + G3)py — Gy(Gy + Gy)ps
G> i
b

Py

(6)

We notice that the noise source of contact 1 gives a positive
contribution see Eq. (1), whereas the noise sources of
contacts 2 and 3 contribute with a negative sign. We remark
that if all contacts contain only fully transmitting or fully
reflecting modes, i.e., by using a QPC at a plateau they do
not produce partition noise proportional to G;F;. Thus
at zero temperature such a cavity exhibits noise only due
to the nonzero ‘‘effective temperature’ [18] kgT. =
[dEf.(1 — f.) inside the cavity. The resulting correlation
is negative and equal to the ensemble averaged shot noise
of a quantum coherent cavity [17].

To reverse the sign of the current correlation one needs
to reduce the negative contribution to Eq. (6) while keeping
the positive contribution finite.

Effect of inelastic scattering.—To reduce the negative
contributions to the correlations in Eq. (6), we now drive
the distribution function f, inside the cavity toward an
equilibrium distribution function, thereby reducing the
effective temperature kgTo = [dEf (1 — f.). We allow
particles in the dot to exchange energy with a voltage probe
which is connected to the cavity with conductance G,. In
the following we consider contact 1 to generate shot noise
with the Fano factor F, and contacts 2 and 3 to be perfect,
so that G, F, = 0 and G3F5 = 0.

The voltage at the probe is found from I p=
G, [dE[f,(E) — f(E)] =0, where G, = (e?/h)N, is
the conductance of the contact which connects the voltage
probe with the cavity. Since the distribution function in the
cavity is defined from the balance of currents at each
energy, it will be affected by the presence of the voltage
probe,

Glfl (E) + GOfO(E) + prp(E)
Gs + Gp '

f(E) = (7
Here, as above, Gy =33 G, and G, = G, + G;.
Substituting Eq. (7) into the equation for the current to

the probe and performing the integration over energy we
find the voltage in the probe V, = V,G,/Gy. The distri-
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bution f, in the cavity has three steps [in the elastic case,
Eq. (3), it has only two steps]. If G, is small (weak inelastic
scattering), then the distribution function in the cavity
coincides with the elastic one and strongly deviates from
an equilibrium distribution. In the limit of strong energy
relaxation f,. = f, is an equilibrium distribution with the
Fermi energy at eV,. The current at the voltage probe
fluctuates according to

AI(E 1) =i,(E 1)+ G,[6f,(E 1) — 6f(E, )] (8)

which together with Egs. (4) and (5), fully specifies the
fluctuating currents.

From Al,(r) = 0 we obtain ALi(t) = i;,(1) — G,[i;(r) +
ir(t) + i3(t)]/ Gy, where i;(t) = [ dEi;(E, t). Therefore the
calculation proceeds as above and we obtain the current
cross correlations at contacts 2 and 3:

=20 [ae 010~

Glj:l
Gy

Py = (/1 _fc)2:|'

()]

Using expression (7) for the distribution function and
performing the integration over energy we obtain

_ _2€VG1G2G3 Gp(G() - Gl)
GE(GE + Gp)2 Gs

(Go + G,)* GIGp(zc20 + G,,))} (10)
Gy Gs

Py [GO +G,+

—ﬁ(

For G, =0 we find the negative result for the cross
correlations of Eq. (6), while for strong inelastic scattering
G, — o we obtain

G,G,G5G,

P23 = 2€Vf1 3
GE

e3Y)

We see that cross correlations are indeed positive in the
case of strong inelastic scattering inside the dot.

Equation (10) is a key result of this work. The crossover
from negative to positive cross correlations of Eq. (10) are
depicted in Fig. 2 for the case that all contacts have two
channels. The transmission probabilities of the noise gen-
erating contact are both equal and given by I'. The broken
line and the solid line are for voltage probes with 4 and 15
channels. For small I the distribution f, is very close to an
equilibrium distribution function, and a small amount of
inelastic scattering is sufficient to equilibrate the distribu-
tion. As a consequence for small I', the correlations are
positive. As the transparency increases, the distribution
function f, deviates strongly from the equilibrium Fermi
function. The cavity is effectively “hot’” and eventually the
cooling provided by the voltage probe is not sufficiently
strong to suppress the negative contributions to the shot
noise correlation. Comparison of the curves for N, = 4
and N, = 15 shows that the range of positive correlations
is the wider the stronger the cooling of the voltage probe.

0.4 0.6 0.8

FIG. 2. Ensemble averaged current-current correlation as a
function of transmission probability I". The full and broken lines
are the analytical results of the semiclassical theory. The open
symbols are from a numerical integration over an ensemble of
random matrices for different symmetry classes 8 = 1,2 and
different number of channels N, of the voltage probe.

Random matrix theory.—We next discuss the crossover
for samples which are at least partially coherent. Since
each sample has particular scattering properties depending
on the shape of the cavity, positions of impurities, and gate
voltages it is interesting to consider the statistical distribu-
tion P of the shot noise correlation P,;. We describe the
node with a scattering matrix and as above introduce
inelastic scattering with a voltage probe. For chaotic cav-
ities, the case of interest here, the ensemble averaged noise
is equal to the semiclassical result Eq. (10). In the presence
of fluctuations away from the ensemble average there is
therefore the interesting possibility that ensemble members
might have correlations with a different sign than the
ensemble averaged correlation.

Statistical properties of the transport quantities of cha-
otic cavities are well described by random matrix theory
(RMT). From our discussion we know that additional
scattering at the contact 1 is essential in order to reverse
sign of cross correlations. If the quantum channels of the
contacts are not fully transparent then the combined scat-
tering matrix of the cavity and contacts can be written [21]
S=R—-TA—-UR'UT. Here R and T are reflec-
tion and transmission matrices of contacts. We chose scat-
tering determined by [ at a contact 1 and perfectly trans-
mitting channels in all other contacts. Therefore, T =

diagtVT, 1,1..} and R = diag{/1 — T,0,0.. .}, where I
is the transmission matrix of the contract 1. U is scattering
matrix of the cavity itself which is distributed uniformly
over the orthogonal, 8 = 1, (unitary, 8 = 2) ensemble.
For simplicity we keep all transmission probabilities equal
and take I', = T.

In the presence of a voltage probe, the cross correlation
P3 can be expressed in terms of the noise correlators p;; =
2 [dKi;(1)i;(0)) calculated for a conductor with equilib-
rium distribution f7, f, fo at the corresponding contacts.
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FIG. 3. Distribution of the shot noise correlation for a meso-
scopic cavity. The cavity is connected via a noise generating
contact with transmission I" per channel and two perfect contacts
to reservoirs. For the case of two channels per contact and
15 channels in the voltage probe the transition from negative
to positive correlations is near I' = 0.5.

The correlation P,3 is given [10,11,17] by

G2pp3p _ G3pp2p
G G

G1,G3,p
Py = po3 — + L PPP(12)

2
pp pp GPP

Here G,5=(e?/h)[ 845Ny — tr(SJraSaB)] are the coherent
conductances determined from the scattering matrix S, g.

The results of a numerical integration of Eq. (12) for the
ensemble averaged cross correlation are shown in Fig. 2 for
B =1,2and N, = 4, 15 and compared with the semiclas-
sical result Eq. (10). For I' =1 it is straightforward to
evaluate [21] Eq. (12) to leading order in the number of
channels for 8 = 2,

4¢3V N (3N +2N,)
9r (BN +N,)?* '

Py = (13)
where N, is the number of channels in each lead, N, is the
number of channels in the probe. There is a perfect agree-
ment between the semiclassical result of Eq. (10), numeri-
cal integration of Eq. (12) for I' = 1, and the analytical
calculation Eq. (13).

We now obtain numerically the full statistical distribu-
tion P of the current cross correlations Eq. (12). Figure 3
shows a set of distribution functions of current cross cor-
relations P,3 for different transparency I of the contact 1
for B = 2. For very small I' the distribution function is
large only for positive values of the correlation. As I’
becomes larger a tail of the distribution extends to the
region of negative correlations. Eventually for large I" the
distribution is large only for negative correlations with a
tail extending to positive values of P,s.

Conclusions.—Photons bunch, electrons antibunch.
This statement is often made to explain the negative sign
of current correlations in mesoscopic conductors. How-
ever, electrons are interacting entities. In particular, voltage

fluctuations which accompany inelastic scattering intro-
duce correlations which are stronger than those dictated
by the Pauli principle alone. As a consequence, under a
wide range of conditions, current-current correlations in
normal mesoscopic conductors can be positive. We exam-
ined the crossover in detail for a range of geometries that
can be subjected to experimental tests. Importantly, our
work demonstrates that positive correlations can in general
not be used as an ‘“‘entanglement witness” since they can
be due to purely classical correlations.
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