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Static Dielectric Properties of Carbon Nanotubes from First Principles
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We characterize the response of isolated single-wall (SWNT) and multiwall (MWNT) carbon nano-
tubes and nanotube bundles to static electric fields using first-principles calculations and density-
functional theory. The longitudinal polarizability of SWNTs scales as the inverse square of the band
gap, while in MWNTs and bundles it is given by the sum of the polarizabilities of the constituent tubes.
The transverse polarizability of SWNTs is insensitive to band gaps and chiralities and is proportional to
the square of the effective radius; in MWNTs, the outer layers dominate the response. The transverse
response is intermediate between metallic and insulating, and a simple electrostatic model based on a
scale-invariance relation captures accurately the first-principles results. The dielectric response of non-
chiral SWNTs in both directions remains linear up to very high values of applied field.
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Carbon nanotubes attract a lot of scientific interest due to
their unique and versatile electronic and mechanical prop-
erties, suitable for a wide range of applications. Nanotubes
have different electronic properties, determined in the
zone-folding scheme by the chiral vector: Armchair
(m;m) nanotubes are 1D metals, and zigzag (m; 0) nano-
tubes are semiconductors, with (almost) vanishing gaps for
m � 3n. Synthesis and separation of specific nanotubes
remains a central challenge. Variations in chirality and size
influence dielectric properties, which in turn can be ex-
ploited for separation; e.g., electric fields have been used to
align nanotubes during plasma-enhanced chemical vapor-
deposition (PECVD) synthesis [1,2] and to separate differ-
ent tubes in solutions [3]. A detailed physical understand-
ing of dielectric response is also needed to characterize
optical excitations, screening at contacts, plasmons in
nanotube arrays, and the degree of control achievable on
endohedral fillings. While in recent years the response of
single-wall carbon nanotubes (SWNTs) has been studied
with tight-binding [4–6] and first-principles approaches
[7,8], multiwall carbon nanotubes (MWNTs)—a more
common product of synthesis—have received much less
attention due to their complexity. We present here a com-
prehensive and detailed picture of dielectric screening in
SWNTs, MWNTs, and bundles, using a combination of
first-principles techniques and introducing an accurate
classical electrostatic model that captures the unusual re-
sponse of these materials.

All calculations are performed using QUANTUM-

ESPRESSO [9] with the Perdew-Burke-Ernzerhof approxi-
mation and ultrasoft pseudopotentials in a plane-wave
basis. A tetragonal unit cell is set up with periodic-
boundary conditions in 3D and a k-point sampling grid
of at least 30� 1� 1. Atomic configurations are generated
using an interatomic distance of 1.42 Å, obtained from
careful relaxation studies [10]. Longitudinal and transverse
polarizabilities are calculated using density-functional per-
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turbation theory (DFPT) [11] and finite-field or electric-
enthalpy approaches [12]. Since we use periodic-boundary
conditions, we effectively simulate a three-dimensional
bulk material consisting of a square array of infinite par-
allel nanotubes. The longitudinal dielectric response of an
isolated nanotube is characterized by the polarizability per
unit length �k, which is related to the separation-dependent
bulk dielectric constant �k via

�k � 1�
4�
�
�k; (1)

where � � L2 is the cross-sectional area of the unit cell.
From linear-response theory [13], we expect the static
dielectric constant to depend on the gap as ��q� � 1�
�@!p=�g�

2, which suggests via (1) that �k � 1=�2
g. Our

calculations confirm this behavior in zigzag nanotubes, as
shown in Fig. 1. As expected, �9; 0�, �12; 0�, and �15; 0�
nanotubes have the smallest gaps and the largest �k; the
inverse-square dependence on the gap roughly holds over
2 orders of magnitude. Only the narrowest nanotubes �7; 0�
and �8; 0� deviate from this trend. The agreement is par-
ticularly accurate for large-gap zigzag nanotubes (3n�
1; 0) and (3n� 2; 0), with n > 2. We note in passing that
for these SWNTs our first-principles results can be fitted
well with these relations: �g � 3:3=R0 � 0:06 and �k �
8:2R2

0 � 20:5, with �g in eV and R0 in Å. Previous tight-
binding studies [4] reported values of �k comparable to
ours and noted a relation �k � R0=�2

g, which we also
observe for large-gap nanotubes (Fig. 1). For infinitely
long armchair SWNTs, the longitudinal polarizability per
unit length �k diverges since there is no gap in the band
dispersions. To get a sense of scaling, we can approximate
such nanotubes as metallic ellipsoids of length l and trans-
verse radius R (l� R); the classical result is �k �
l2=	24�ln�l=R� 
 1��. For MWNTs, the longitudinal pic-
ture remains simple: Depolarization effects along the axis
1-1 © 2006 The American Physical Society
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FIG. 1 (color online). Log-log plot of �k of zigzag SWNTs as
a function of band gap. The dashed line has slope 
2. The inset
shows �k for large-gap SWNTs as a function of R0=�2

g.
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are negligible, and constituent tubes have very weak di-
electric interactions. The total polarizability �tot

k
should

then be the sum of polarizabilities of constituent SWNTs;
this conclusion is confirmed by our results in Table I.

We address the characterization of the transverse dielec-
tric response in two different ways. First, we calculate with
DFPT the dielectric constant �?, from which the transverse
polarizability �? is extracted. To study nonlinear finite-
field effects, we also obtain �? by applying an electric
field Eout via a sawtooth potential and computing the total
induced dipole moment per unit length p?. In the linear
regime, the two approaches are equivalent, and we find an
TABLE I. Radius of the carbon backbone, band gap, and
transverse and longitudinal polarizabilities (per unit length) of
carbon nanotubes as a function of the chiral vector (n;m).

(n;m) R0 (Å) �g (eV) �? ( �A2) �k ( �A2)

�7; 0� 2.74 0.48 6.47 83.0
�8; 0� 3.15 0.57 7.80 104
�9; 0� 3.58 0.17 9.32 1460
�10; 0� 3.95 0.91 10.9 142
�11; 0� 4.34 0.77 12.7 186
�12; 0� 4.73 0.087 14.3 6140
�13; 0� 5.09 0.72 16.3 224
�14; 0� 5.48 0.63 18.4 279
�15; 0� 5.88 0.041 20.3 11 100
�16; 0� 6.27 0.61 22.9 326
�17; 0� 6.66 0.53 25.2 395
�8; 0� � �17; 0� � � � � � � 25.8 499
�8; 0� � �16; 0� � � � � � � 23.6 427

�4; 4� 2.71 (0) 6.41 (1)
�5; 5� 3.40 � � � 8.71 � � �

�6; 6� 4.10 � � � 11.6 � � �

�7; 7� 4.76 � � � 14.7 � � �

�8; 8� 5.45 � � � 18.1 � � �

�9; 9� 6.12 � � � 21.8 � � �

�10; 10� 6.78 � � � 26.1 � � �

�12; 12� 8.14 � � � 35.8 � � �

�14; 14� 9.50 � � � 47.2 � � �
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agreement between the two methods within 1%. Both DFT-
based calculations take into account the local-field effects
that would be absent in tight-binding calculations. Again,
since calculations provide us with the transverse response
of a periodically repeated array of nanotubes, it is neces-
sary to remove the depolarization fields stemming from the
periodic images. In principle, one could use

�b? �
�

4�
��? 
 1� �

p?
Eout

(2)

for the first and second methods, respectively, while taking
the limit L! 1 for which the depolarization fields vanish.
In practice, these persist for very large intertube separa-
tions due to the long range of electrostatic interactions
between image tubes. Computation time grows as L2 at a
fixed energy cutoff, quickly becoming unmanageable with-
out even reaching a converged result; Fig. 2 illustrates the
slowness of this convergence. It is clear, however, that at
large separations only electrostatic effects are important, so
we can solve this problem using a classical 2D Clausius-
Mossotti correction [14] relating the single-tube polariz-
ability �? to the periodic bulk L-dependent value �b?. The
relevant conversions are

�? �
�

2�
�? 
 1

�? � 1
�

�b?
1� 2�

� �b?
: (3)

The values of�? obtained from (3) are listed in Table I and
plotted in Fig. 3 as a function of the square of the effective
outer radius ~R � R0 � 1:3 �A (see below). Remarkably,
transverse polarizabilities of both metallic and semicon-
ducting SWNTs lie on the same curve, which can be fitted
by a line �? � c ~R2, with slope c � 0:40. Thus, chirality
and longitudinal band structure have a negligible effect on
the transverse dielectric response; this was observed in
earlier calculations [4,7,8] and justified with symmetry
arguments in the single-particle approximation [4].
Recent tight-binding calculations [5,6] predict a small
difference between polarizabilities of metallic and semi-
conducting SWNTs; however, we do not detect these dif-
ferences in our DFT calculations.

Periodic-boundary conditions allow us to examine the
bulk dielectric response of nanotube bundles. We compute
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FIG. 2 (color online). Convergence of �? and �b? with respect
to the size L of the tetragonal unit cell for a �5; 5� SWNT. The
point at L � 10:6 �A corresponds to a typical tube-tube separa-
tion in a nanotube bundle.

1-2



FIG. 4 (color online). Electrostatic potential for a �10; 10�
SWNT in an applied homogeneous transverse field Eout. The
electric field through the center slice is shown in the inset.
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FIG. 3 (color online). Transverse polarizabilities �? of arm-
chair and zigzag nanotubes as a function of ~R2. The dashed line
is the best-fit result of our semimetallic shell model; the solid
line �? �

1
2

~R2 corresponds to an ideal metallic cylinder.
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�? and �k of triangular and square arrays with an intertube
separation of d � 3:4 �A [15]. The values of �k accurately
match those computed from �k of isolated nanotubes using
(1), thus reflecting the additive property of the longitudinal
response. In contrast, the transverse response of bundles
depends strongly on d. Figure 2 illustrates both the benefits
of using the Clausius-Mossotti relation (3) for large d and
the limitation of its applicability when d is small. Whereas
the longitudinal response remains simple, the transverse
dielectric tensor at small d may have sizable anisotropic
and off-diagonal contributions depending on the point-
group symmetries of the nanotubes and the lattice. These
contributions vanish quickly with d and do not affect our
isolated tube calculations.

By applying a finite transverse field Eout, we can also
study screening inside a nanotube; we find the inner field
Ein to be very uniform, as shown in Fig. 4. Another
remarkable feature is that the screening factor Eout=Ein �
4:4 0:1 turns out to be independent of radius and chi-
rality for all SWNTs. To make physical sense of these
general results, we look for a simple electrostatic model
that would capture these traits. A solid dielectric cylinder
of radius ~R and bulk dielectric constant � would have
polarizability �? �

1
2
�
1
��1

~R2, a uniform inner field, and a
screening factor Eout=Ein � ��� 1�=2 independent of ra-
dius. This picture, however, does not correspond to a nano-
tube, where screening is accomplished by a thin layer of
delocalized � electrons. One could then treat a nanotube as
a dielectric cylindrical shell of finite thickness. In this case,
the inner field remains uniform, but the screening factor
decreases with increasing radius. To identify an appropri-
ate model that incorporates all the observed features, we
note that, in general, a radius-independent uniform inner
field is produced by the surface charge density ���� �
�0 cos���, where � is the angle measured from the direc-
tion of Eout. The dipole moment per unit length in this case
is p? � ��0

~R2 � �?Eout and the polarizability is �? �
���0=Eout� ~R

2 � c ~R2, with c � 1=2. In a metallic cylinder,
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c is 1=2 and the outer field is completely screened. A best
fit of our ab initio data for SWNTs to this model (see
Fig. 3) yields the slope c � 0:40 and effective radius ~R �
R0 � 1:3 �A larger than the radius of the carbon backbone
R0, consistent with the finite thickness of the electronic
charge density distribution. Elementary electrostatic con-
siderations yield a screening factor Eout=Ein �

1
1
2c � 5 in

good agreement with our finite-field calculations and pre-
vious estimates [4,5]. It should be stressed that the screen-
ing properties of nanotubes, reflected in this model, are
neither metallic nor insulating. This peculiarity is physi-
cally grounded in the fact that in a single sheet of graphite
the screening of Coulomb interactions is anomalous due to
the vanishing density of states at the Fermi points [16]. For
carbon nanotubes (as opposed to boron-nitride nanotubes),
the semimetallic nature of � electrons implies that the
screening factor is radius-invariant.

The generalization of this model to the multiwall case
needs to take into account screening and electrostatic
interactions between layers. Our strategy is to first solve
exactly the general problem of N concentric dielectric
cylindrical shells in a uniform field. We then recover
precisely the above single-layer model by treating a
SWNT as a shell of radius ~R, dielectric constant �, and
vanishing thickness � and constraining these parameters by
the scale-invariance condition

�
�
~R
�

4c
1
 2c

� const (4)

that guarantees that the screening factor remains indepen-
dent of ~R. Modeling a general MWNTamounts to solving a
linear system of 2N � 2N boundary-condition equations
[17] containing the best-fit parameters c and ~R (carried
over from the single-wall case) and subject to constraint
(4). For the double- and triple-wall cases, we find excellent
agreement between this model and our ab initio results
1-3



TABLE II. Transverse polarizabilities of MWNTs.

MWNT �? ( �A2) (ab initio) �? ( �A2) (model)

�8; 0� � �17; 0� 25.8 25.7
�5; 5� � �10; 10� 26.8 26.6
�4; 4� � �12; 12� 36.1 36.0
�9; 9� � �14; 14� 49.0 48.2
�4; 4� � �9; 9� � �14; 14� 49.1 48.3
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(Table II). We conclude that the present semimetallic shell
model captures all characteristics of the transverse dielec-
tric response: uniform inner field, radius-independent
screening factor in SWNTs, and correct �? for MWNTs.
We note also that the largest contributions to transverse
polarizabilities come from the outer few layers, and inner
layers play a negligible role due to screening and their
smaller radii. Diameter control alone thus becomes the key
growth-parameter determining transverse response.

The finite-field approach is also used to determine the
range of fields for which the transverse dielectric response
is linear. The �5; 5� nanotube exhibits a precisely linear
response with the same polarizability coefficient to within
3 significant digits for fields of 0.05, 0.5, and 5 V=nm. This
implies that our electrostatic shell model of transverse
response remains valid for large applied fields. To study
the linearity of longitudinal response, we minimize the
electric-enthalpy functional [12] to introduce a finite lon-
gitudinal field in periodic-boundary conditions. We find
that the longitudinal response of the �8; 0� nanotube
becomes nonlinear by only 5% at Ek � 0:5 V=nm.
Nonlinearity is, in fact, suppressed because zigzag and
armchair (nonchiral) nanotubes are center-symmetric, so
the first hyperpolarizability � vanishes by symmetry [7].
To estimate the second hyperpolarizability �k, we compute
polarizations at several values of the field and fit the result
to the expression P � �kE� �kE3. We obtain �k �
106 �A2 (in agreement with the DFPT result in Table I)
and �k � 3:1� 107 in atomic units.

We now turn to the question of alignment of nanotubes
in a uniform electric field. The torque on a nanotube of
length l at an angle 	 to the field E is


 � jp� Ej � l��k 
 �?�E
2 sin	 cos	: (5)

The longitudinal and transverse polarizabilities compete
with each other, but our results imply that �k >�? in all
nanotubes, much more so in metallic and small-gap semi-
conducting nanotubes. Indeed, for all nanotubes �? <
1
2

~R2, whereas for large-gap SWNTs �k * 8:2R2
0, and for

MWNTs �k is additive while �? is not. So all nanotubes
will align with the electric field, but, by tuning the value of
the field during PECVD growth, it may be possible to
selectively grow highly polarizable (e.g., metallic) tubes.

There have also been attempts to separate semiconduct-
ing and metallic nanotubes in solution using inhomogene-
ous electric fields [3]. A polarized nanotube aligned with
the field will be pulled in the direction of or against the
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field gradient, depending on its effective dielectric constant
�k relative to that of the solvent �s. Assuming no solvent
inside the nanotube, and approximating it by a solid di-
electric cylinder of radius R0, we obtain from our values
of �k an effective �k � 1� 4�k=R2

0 � 30 for large-gap
semiconducting SWNTs and obviously much larger values
for small-gap and metallic tubes. This result is consistent
with findings that only metallic SWNTs are observed
deposited on the electrodes in water (�s � 80), whereas
all nanotubes are drawn towards the electrodes in isopropyl
alcohol (�s � 18).

In summary, we studied in detail the dielectric properties
of isolated and bundled SWNTs and MWNTs. In SWNTs,
the longitudinal response is controlled by the band gap,
while the transverse response is sensitive only to the ef-
fective radius. In bundles and MWNTs, longitudinal re-
sponse is additive, while the transverse response in
MWNTs is dominated by the outer few layers. We pre-
sented an accurate scale-invariant electrostatic model of
transverse response, which is intermediate between that of
a metal and an insulator.
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