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Effect of Step Stiffness and Diffusion Anisotropy on the Meandering of a Growing Vicinal Surface
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We study the step meandering instability on a surface characterized by the alternation of terraces with
different properties, as in the case of Si(001). The interplay between diffusion anisotropy and step stiffness
induces a finite wavelength instability corresponding to a meandering mode. The instability sets in beyond
a threshold value which depends on the relative magnitudes of the destabilizing flux and the stabilizing
stiffness difference. The meander dynamics is governed by the conserved Kuramoto-Sivashinsky
equation, which display spatiotemporal coarsening.
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Molecular beam epitaxy (MBE) is often used to grow
nanostructures on vicinal surfaces of semiconductor and
metallic crystals [1–5]. Under nonequilibrium growth a
very rich variety of crystal surface morphologies are ex-
perimentally observed resulting from the nonlinear evolu-
tion of step bunching and meandering instabilities [6–8].
Self-organized patterns arising from these instabilities may
be used for the development of technological applications
such as quantum dots and quantum wells [9,10]. The step
meandering instability was originally predicted theoreti-
cally by Bales and Zangwill [11] for a vicinal surface under
growth. Its origin comes from the asymmetry between the
descending and ascending currents of adatoms. Nonlinear
extensions of this work have shown that the meander
evolution can be described by amplitude equations show-
ing diverse behaviors: spatiotemporal chaos governed by
the Kuramoto-Sivashinsky equation in the case of the
Erlich-Schwoebel effect with desorption [12]; nonlinear
coarsening in the case of negligible desorption [13–15];
and interrupted coarsening when two-dimensional anisot-
ropy is included [16,17]. Step meandering on a Si(001)
vicinal surface can also be driven by a drift electromigra-
tion current in the presence of alternating diffusion coef-
ficients, even for symmetric adatom attachment to the steps
[18,19].

Recent experiments [20–23] on the growth of Si(001)
have revealed the existence of a step bunching instability
and the development of a transverse two-dimensional com-
plex structure (ripples), possibly reminiscent of a meander-
ing instability. We have recently shown that the observed
step bunching instability is due to the interplay between the
elastic interactions and the alternation of the step parame-
ters [24]. In order to understand the roughening of the
Si(001) surface during growth it would be important to
know if step bunching and meandering can arise simulta-
neously. So far, no conclusive experimental evidence for
the presence of the Schwoebel effect leading to meander-
ing instability has been established.

In this Letter, we show that the difference in step stiff-
ness and diffusion anisotropy induces a meandering insta-
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bility which can account for the complex step structures
observed in Si(001) epitaxial growth. We first present the
linear two-dimensional stability analysis of a train of steps
using a simplified extension of the model studied in
Ref. [24]. We show that the interplay between diffusion
anisotropy and the step stiffness effect under growth con-
ditions induces a finite wavelength instability which is
maximum for the in-phase modes. We present the stability
phase diagram in the parameters space. Our results are
complemented by a weak nonlinear analysis of the step
meander which reveals a coarsening dynamics. Using a
simple similarity argument, we show that the characteristic
coarsening exponent is 1=2 and that the general solution of
the conserved version of the Kuramoto-Sivashinsky (CKS)
equations can be thought as a superposition of parabolas.
Finally, we conclude this Letter by discussing the possible
relevance of our model to the experiment on Si growth and
the consequences of the simultaneous existence of bunch-
ing and meandering instabilities.

The Si(001) vicinal surface consists of a periodic se-
quence of terraces where rows of 2� 1 dimerized adatoms
(terrace of type a) alternate with 1� 2 dimerized adatoms
(terrace of type b), as shown in Fig. 1 where we also
introduce several notations. On the reconstructed surface
adatoms diffuse preferentially along dimer rows, giving
rise to an anisotropic diffusion. Therefore, the steps sepa-
rating the terraces are of two kinds. The Sa steps are rather
straight while the Sb ones are very corrugated [25]. We
shall allow each step to have a different step stiffness
coefficient ~�a and ~�b [26]. For simplicity, we neglect
elastic interactions between steps and assume that the
desorption of adatoms is negligible; we also neglect
Erlich-Schwoebel effects. Let us denote by xna�y; t� and
xnb�y; t� the positions at time t of steps Sa and Sb respec-
tively (cf. Fig. 1). During growth, the adatom concentra-
tions on each terrace Cna�x; y; t� and Cnb�x; y; t�, obey the
following diffusion equations [27]:
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FIG. 2. Stability diagram in the plane (f0; �0), for �0 > 1. The
thick gray line f0 � f0c given by Eq. (9), separates the unstable
region (right side), from the stable one (left side). The dispersion
relation ��q� with its two branches is shown in each region.

y

z

xb
n 1

xa
n

xb
n

Da

Db

Sb

Sa

Sb

a

b

FIG. 1. Sketch of the Si(001) vicinal surface showing the
alternation of terraces and steps Sa and Sb. Lines on terraces
indicate the privileged diffusion directions. Da, Db and ~�a, ~�b
are the surface diffusion and step stiffness coefficients, respec-
tively; xna, xnb and �na�y; t�, �nb�y; t� are step positions and the
corresponding perturbations.
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Db@2
xCnb �Da@2

yCnb � �F; (2)

where Da and Db are the diffusion coefficients, and F the
deposition flux. Cna and Cnb are the difference of adatoms
concentrations with respect to the uniform equilibrium
concentration C0 (taken to be the same on both terrace
types). We assume for Cna and Cnb, the following boundary
conditions:

Cna�xn�1
b � � Cn�1

eq;b ; Cna�xna� � Cneq;a; (3)

Cnb�x
n
a� � Cneq;a; Cnb�x

n
b� � Cneq;b; (4)

which correspond to instantaneous attachment kinetics,
and can be considered as the simplest ones capturing the
main physical effects (no diffusion along steps and negli-
gible transparency). The adatom equilibrium concentra-
tions Cneq;a and Cneq;b depend on the step curvatures �na
and �nb [12]:

Cneq;a � C0�a�
n
a; Cneq;b � C0�b�

n
b; (5)

with �b � �~�b=kBT and �a � �~�a=kBT (� is the unit
atomic surface, T the temperature, and kB the Boltzmann
constant). The normal velocities of each step are vna �
_xna=�1� �@yxna�2�1=2 and vnb � _xnb=�1� �@yx

n
b�

2�1=2, where
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n
b �Da�@yx

n
a�@yC

n
b� � �Da@xC

n
a

�Db�@yxna�@yCna�gx�xna ; (6)

_x nb��f�Da@xCn�1
a �Db�@yxnb�@yC

n�1
a ���Db@xCnb

�Da�@yx
n
b�@yC

n
b�gx�xnb : (7)

In order to get a nondimensional version of Eqs. (1)–(7),
we set the unit of length to be the initial size of the terrace
l0 and the unit of time l30=�C0�a�Da�. The system is
controlled by three independent positive nondimensional
parameters:
16610
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Fl30
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Db
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which, respectively, relate to the flux, diffusion anisotropy,
and step stiffness difference.

We investigate now the linear stability of a train of
equidistant steps traveling at a constant velocity f0 when
perturbed transversally. The shape of the steps can be
decomposed in Fourier modes of the form xna�y; t� � f0t�
2n� �na�y; t� and xnb�y; t� � f0t� 2n� 1� �nb�y; t�, with
�na and �nb the perturbation amplitudes varying as
exp���q;��t� iqy� in��, where q is the wave number
and � the phase (see Fig. 1). Inserting these expressions
into (1)–(7), we obtain the general dispersion relation � �
��q;��. The dispersion relation possesses, for each�, two
branches corresponding to a stable �s and an unstable �u
mode. The maximum growth rate is reached for the in-
phase perturbation � � 0 (Fig. 2). In the following we
consider only this in-phase mode, thus neglecting the n
dependence �na � �a, and �nb � �b (the system is periodic
in the x direction with period 2l0). We find that the insta-
bility appears above a flux threshold f0c given by,

f0 > f0c � �12�0�0=��0 � 1�; (9)

where f0 > 0. The stability domain in the plan (f0; �0) is
shown in Fig. 2. Typically the instability is related to a
large diffusion Db on terrace b (�0 	 1) accompanied by
a small stiffness ~�b of step Sb (�0 > 0). Although the full
expression of the dispersion relation is cumbersome, near
the instability threshold we can introduce a small parame-
ter � measuring the distance to the threshold. This parame-
ter arises naturally when considering the long wavelength
limit, in which q! �q. In this limit the relevant scaled
parameters are chosen to be: f0 � �f, �0 � ��, �0 � 1�
�2�, together with a rescaling of the stiffness �a ! �2�a.
This scaling will lead to a consistent weak nonlinear
expansion, as it will be shown below. To lowest order the
two branches of � � ��q;�� are,
4-2
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FIG. 3. Spacetime plot of u�y; t� with nondimensional y and t
axes, given by the numerical solution of the CKS equation. The
coarse graining of structures leads to a superposition of parab-
olas, with a size hu2i1=2 
 t. In the long time state all the
parabolas tend to have unity curvature at their maximum, and
width increasing as

��
t
p

.
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�s � �4�4q2; (10)

�u �
�6

48
f��f�� 12��q2 � �6q4: (11)

The growth rate �u is maximum for the wave number
qm � �f��f�� 12���1=2=4

���
6
p

. Even for vanishing � (no
difference between step stiffness) an instability is still
present driven by diffusion anisotropy and growth effect,
�u�qm� 
 f4�4. The physical mechanism of the instability
is the point effect, increasing the diffusion around the
maxima, combined with the anisotropy in diffusion be-
tween two consecutive terraces, locally impeding the com-
pensation of the currents leaving and reaching the steps. If
the anisotropy was absent, a simple difference in diffusion
coefficients would not lead to an instability as a conse-
quence of mass conservation.

Taking, for example, typical values for Si(001) at two
different temperatures T � 1000 K and T � 800 K [with
l0 � 2� 10�8 m and F � 0:1 ML s�1 (ML denotes
monolayer)], f0 � 0:3, and 4.3, �0 � 45, and 119, and
�0 � 0:9, we obtain that the typical wavelength of the
meanders is of the order of 250 and 60 nm, respectively.
These sizes are in the range of the transverse modulations
(ripples) of the step bunches observed in the experiments
[20–23].

We study at present the nonlinear evolution of the me-
andering instability, in the limit of weak amplitudes and
long wavelengths. An inspection of Eqs. (10) and (11) for
the damping and growth rates, suggests that we should
consider different time scales and amplitudes for the stable
and unstable branches. We introduce the functions s�y; t�
and u�y; t� corresponding to the amplitudes of the stable
and the unstable branches, respectively. These amplitudes
are related to the step shape by,

�a
�b

� �
� �M0���

�s
u

� �
; (12)

where M0 is the matrix formed with the eigenvectors
associated to the linear dispersion relation and depends
on the physical parameters (f0; �0; �0). In order to obtain
the relevant nonlinear dynamics we use a standard multi-
scale method. Adatoms concentrations and step shapes are
expanded in powers of �. The amplitudes of this expansion
depend on the slowly varying space �y and two time
variables �4t and �6t. In particular the stable and unstable
shape functions are given by s � s��4t; �y� and u �
u��6t; �y�. Solving diffusion equations (1) and (2) and
boundary conditions (3) and (4) up to order �7, and insert-
ing the results into the step velocity equations (6) and (7)
we find the equation for the unstable mode:

@tu � �@
2
y

�
f�
48
�f�� 12��u� @2

yu�
f
12
�@yu�

2

�
; (13)

where we renamed the slow variables �6t! t and �y! y.
After rescaling, we can write Eq. (13) in the form @tu �
16610
�@2
y�u� @

2
yu� �@yu�

2=2�. This is a conserved version of
the CKS equation. The numerical simulations [28] of a
related equation describing bunches created by an electro-
migration current, thus having an extra symmetry breaking
term in @3

yu, have revealed a noninterrupted coarsening
dynamics with a characteristic size of coalesced step
bunches increasing as t1=2. In our context this @3

yu term,
leading to a dispersive drift, must be absent. Our direct
simulations confirmed a t1=2 scaling and also demonstrate a
linear time growth of the characteristic meander amplitude
hu2i1=2 
 t (spatial average is denoted h� � �i). A typical
spatiotemporal evolution from a random initial condition
is shown in Fig. 3. In the context of the Bales-Zangwill
meandering instability, it was shown that the dynamics of
steps is fully nonlinear, excluding the CKS equation,
although it would be compatible with the basic symmetries
of the system [15].

Simple similarity and matching arguments lead to a
complete picture for the long time behavior of (13). It is
worth noting that the CKS equation admits an exact par-
ticular solution in the form of a stationary parabola
u�y; t� � �y2=2. We also note that, for rapidly decreasing
or bounded functions, the moment of order 1 of u�y; t� is
conserved while the second order moment satisfies

d
dt

1

2

Z
u2dy �

Z
��@yu�

2 � �@2
yu�

2�dy; (14)

showing that the amplitude of u tends to increase in regions
where the gradient term @yu inside the integral dominates
the curvature term @2

yu. This suggests that the dynamics of
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large amplitude smooth regions of u�y; t� is almost inde-
pendent of the four derivative (stabilizing) term in (13).
Trying a similarity solution

u � ta’�y=tb�; Y � y=tb (15)

of @tu � �@
2
y�u� �@yu�

2=2�, we find immediately the
exponents b � 1=2 and a � 1, which agree with our nu-
merical results. The fourth order derivative term behaves as
@4
yu
 @

4
Y’=t, which is consistent with the above assump-

tion that it should be negligible in the considered regime.
Moreover, the similarity equation for ’: ’� �Y=2�@Y’�
@2
Y�’� �@Y’�

2=2� � 0 has a solution in the form of a
bounded parabola:

u�y; t� � �y2=2; jyj< y0�t� (16)

and zero elsewhere. The parabola edge y0�t� is determined
by the condition

d
dt

1

4

Z y0�t�

0
y4dy � 2

Z y0�t�

0
y2dy; (17)

a consequence of (14), which gives y0�t� � �16t=3�1=2. The
general, asymptotic solution of (13) can be thought as a
superposition of parabolas satisfying (16) (see Fig. 3).
The joining region between the parabolas possesses a
high curvature and can be described by the reduced inner
equation @2

yu�y� � �1=2��@yu�y��2 � 2k2 � const, whose
solution is of the form u�y� � 2 logfcoshk�y� y0�t��g.
Matching with the outer solution (16) we find that k �
y0�t�=2


��
t
p

. Therefore, the curvature of the joining line
increases as �
 t.

In this Letter, we have shown that the effect of step
stiffness difference and diffusion anisotropy induces a
meandering instability during surface growth. We have
first presented a linear stability analysis of a train of steps
using a simplified two-dimensional extension of the model
studied in Ref. [24]. We have shown that the interplay
between diffusion anisotropy and the step stiffness effect
under growth conditions leads to a finite wavelength in-
stability which is maximum for the in-phase mode. Our
results are complemented by a weak nonlinear analysis of
the step dynamics which reveals that the amplitude of the
meanders is governed by the conserved Kuramoto-
Sivashinsky equation which displays noninterrupted coars-
ening. We believe that the morphology observed in experi-
ments of MBE on Si(001) slightly disoriented towards the
�110� direction, reported in Refs. [20–23], can be ex-
plained by the nonlinear evolution of the step bunching
and step meandering instabilities arising simultaneously.
Indeed, we will present elsewhere an investigation of the
two-dimensional dynamics originated by the nonlinear
coupling between these kinetic effects, and we will discuss
their role in the formation of the ripples shown for instance
in Fig. 1 of Ref. [21].
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