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Bose-Einstein Condensation of Incommensurate Solid *He
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It is pointed out that the simulation computation of energy performed so far cannot be used to decide if
the ground state of solid “He has the number of lattice sites equal to the number of atoms (commensurate
state) or if it is different (incommensurate state). The best variational wave function, a shadow wave
function, gives an incommensurate state, but the equilibrium concentration of vacancies remains to be
determined. We have computed the one-body density matrix in solid “He for the incommensurate state by
means of an exact ground state projector method in which incommensurability occurs spontaneously. We
find a vacancy induced Bose-Einstein condensation of about (.23 atoms per vacancy at a pressure of
54 bar. This means that bulk solid “He is supersolid at low enough temperature if the exact ground state is

incommensurate.
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Introduction.—Experiments by Kim and Chan [1,2] give
evidence for nonclassical rotational inertia of solid “He,
one hallmark of the supersolid state of matter [3]. These
results have generated large interest because this would be
a novel state characterized, in a bulk sample, by sponta-
neous broken translational symmetry and by a suitable
rigidity of the phase of the wave function (WF) giving
rise to superfluid properties. The standard mechanism for
this rigidity is the presence of Bose-Einstein condensation
(BEC). Such as state with BEC was suggested long ago
[4,5] as a possibility for a quantum solid of boson particles.
Early theoretical works [3—6] were based on simplified
models so that it was not possible to draw specific predic-
tions for solid “He. Powerful simulation methods have
been applied to study a realistic model of solid “He in
the last two years. A path integral Monte Carlo (PIMC)
simulation has been applied to study crystalline “He at a
finite temperature, and the authors conclude that the su-
perfluid fraction p; at T = 0.2 K is zero [7] and that [8]
there is no off-diagonal long range order (ODLRO); i.e.,
there is no BEC at T = 0.2 and 0.5 K. On the other hand,
the ground state of crystalline “He has been studied by
variational methods based on the shadow wave function
(SWF), and this study shows that ODLRO is present [9] for
arange of densities above melting with a rather small value
of BEC fraction. One important point to mention is that in
these PIMC and SWF computations the crystal is com-
mensurate in the sense that the number M of lattice sites is
equal to the number N of particles, i.e., M = N. One finds
in the literature [7,8,10] statements that it is certain that the
ground state of solid “He is commensurate because micro-
scopic computations [11,12] have shown that a vacancy
increases the energy of the system by at least 15 K and by
an even higher value in the case of an interstitial. The first
purpose of this Letter is to present a critical discussion of
such statements and to examine if the ground state of
crystalline “He is commensurate (i.e., N = M) or if it is
incommensurate (N # M) in the sense that the lattice
parameter inferred from bulk density measurement differs
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from the one deduced from Bragg scattering. Present ex-
periments [13] do not give evidence for vacancies at low 7,
but new measurements seem needed to put a stringent
bound on ground state vacancies. The nature of the ground
state, commensurate (C) or incommensurate (I), is a very
important point, and a phenomenological theory [14] has
shown that the low T properties of crystalline “He would be
strongly modified should the ground state be incommensu-
rate. Our conclusion will be that the microscopic compu-
tations of solid “He present in the literature do not allow
one to infer if the ground state is C or L. Since the presence
of vacancies in the ground state cannot be excluded, it is
important to study their properties; in particular, we study
if there is BEC induced by vacancies. This has been studied
variationally [15], and here we present an exact computa-
tion by a shadow path integral ground state (SPIGS)
method [12] that confirms a vacancy induced BEC.
Commensurate or incommensurate?—First, we notice
that the computations [11,12] at the basis of the estimate of
the formation energy of a vacancy are actually based on the
computation of the ground state energy of two different
systems. To be specific let us consider the SPIGS compu-
tation. The method is based on the application of the
imaginary time evolution operator exp{—7H} to an as-
sumed trial function, on a SWF in the case of SPIGS and
on a splitting of this operator exp{—7H} = [exp(— %I-AI )1ia
which gives rise to a path integral of linear polymers.
When 7 is large enough, a sampling of the exact ground
state of the system is obtained. Notice that in both the SWF
and the projection procedure equilibrium sites of the solid
are not introduced at any stage of the computation, but the
crystalline order, if stable, arises as spontaneous broken
symmetry. With this method two computations are per-
formed, one in which the number N of particles is equal to
the number M of lattice sites, which fits in the simulation
box and satisfies the periodic boundary conditions (PBC),
and one in which N =M — 1. In the second case the
simulation shows that the local density continues to have
M maxima with essentially the same degree of crystalline
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order, as measured by the height of the Bragg peaks, as in
the case N = M. This means that in the second case the
crystalline order is stable with one mobile vacancy and
such a state is I. The SPIGS computation in the two cases
gives a converging energy, and one example of the evolu-
tion of E as a function of 7 is shown in Fig. 1 for the fcc
lattice. State C is for N = M = 108 at p = 0.031 A3,
and state I is for N =M — 1 =107 at the same site
density. Starting from a fully optimized SWF [16] just a
few projections are enough to get convergence in both
cases. As an interatomic potential we have used a standard
Aziz potential [17], the time step § = 7/P is (80 K)™!,
and the pair-product approximation [18] has been used for
the imaginary time propagator. Both WFs are non-negative
so both computations produce ground state energies, but
the value E; is slightly larger than E.. Since we are com-
paring the energy for two different choices of N, it makes
no sense to minimize the energy; both values represent a
ground state energy of two periodically repeated small
systems. We conclude that this kind of computation cannot
be used to determine if the ground state of bulk solid “He is
C or I unless one is able to extrapolate these finite size
results to the bulk limit also taking into account the effects
of the PBC. The difference E; — E. has been used [12] to
estimate the formation energy of an extra vacancy in bulk
under the hypothesis of noninteracting vacancies, but this
is only a derived quantity [19]. Also in the classical case it
is well recognized [20] that no direct computation of the
equilibrium concentration X, of vacancies of a solid at
finite temperature is available yet exactly for the same
reasons as in the quantum case: due to the finite size of
any system that can be simulated and to the commensura-
bility effect between the crystal lattice and the simulation
box, the crystal cannot achieve its true equilibrium con-
centration of vacancies [20]. X, in the classical case has
been obtained only indirectly by a statistical thermody-
namics analysis of an extended system. In a similar way we
can expect to get information on the nature C or I of the
ground state of bulk crystalline “He only by considering
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FIG. 1. Energy per particle as a function of the evolution in
imaginary time 7 of a SPIGS simulation of fcc solid *He in a box
with M = 108. Solid circles, state C (N =M) at p=
0.031 A~3; open circles, state I (N = M — 1). The largest value
of 7 corresponds to 14 projections. Statistical errors are below
symbol size.

the WF of an extended system, not of the one which is
simulated.

In the framework of variational theory the WFs fall in
two categories. One category is a WF which contains as a
factor one-body terms which explicitly break the transla-
tional symmetry. Such a WF has great difficulty in describ-
ing a vacancy, and in fact, we are not aware of any such
computation. In addition, the nature C or I is built into the
WF by construction. Finally, such WFs with explicitly
broken translational symmetry give a worse energy [16]
than the one given by WFs of the next category. This
second category represents translationally invariant WFs
for which the crystalline state arises as spontaneously
broken symmetry. One such WF is the time honoured
Jastrow WF. The other one is the SWF which presently
gives the best representation [16] of the ground state of
solid “He in the sense that it gives the lowest energy.

An important point is that both these translationally
invariant WFs give a ground state with a finite concentra-
tion of vacancies and with BEC. In the case of a Jastrow
WE, this was shown by Chester [5] and we briefly repeat
here the argument. Consider a Jastrow WF of a very large
system of N particles in volume V:

N
W, (R) = [Te 2/ Q¢ (1)
i<j
where rij = |;l - Fjl, R = {7"1, ey ;j\f}, and Qj\[ is the
normalization constant of W2, i.e.,

N
On = fv dR 1‘[ e 1), (2)

i<j

As noticed long ago [21] computation of averages with W%
and the normalization Qs have a straightforward inter-
pretation in classical statistical mechanics: W3 coincides
with the normalized probability distribution in configura-
tional space of I\ classical particles at inverse temperature
B = 1/kgT" and interacting with a pair potential v*(r)
such that B8*v*(r) = u(r). Q4 is the canonical configura-
tional partition function of this classical system and its
logarithm is proportional to the excess Helmohltz free
energy. It has been proved [22] that ¥, has a finite BEC
fraction, but it is also known that the equivalent classical
system corresponding to W3 is a crystalline solid, when the
density is large enough, and this solid has a finite concen-
tration of vacancies. For a classical system the fact that a
solid in equilibrium at a finite temperature has a finite
concentration X, = (M — N)/N of vacancies, where
M is the number of lattice sites, even if a single vacancy
has a finite cost of local free energy, derives from the gain
in configurational entropy when the number M — N of
vacancies is proportional to N [23]. Another way of
expressing this is that the configurational partition function
QO of this equivalent classical system has contributions
from different pockets in configurational space, from a
pocket ), in which the positions {7;} of the particles
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correspond to vibrations around the equilibrium positions
of the commensurate N' = M lattice but also from pock-
ets 4, Q,,..., corresponding, respectively, to M =
N +1, ie., a state with one vacancy, to M = N + 2,
and so on. It turns out [20,23] that the overwhelming
contribution to Qs is associated with pockets Q5 A
with a macroscopic number M — N of vacancies.
These observations have an immediate interpretation in
the quantum case: the WF (1) of a bulk system is describ-
ing at the same time states with no vacancies but also with
vacancies and the overwhelming contribution to the nor-
malization constant Q 4 derives from the pockets corre-
sponding to a finite concentration of vacancies. The
simulation of a small system of N particles with PBC is
mimicking the expectation values of the quantum
Hamiltonian of the extended system in a restricted pocket
in configurational space, for instance, the pocket (), of the
commensurate state or the pocket ), of the state with one
vacancy depending on if N =M or N = M — 1. Notice
that in a Monte Carlo (MC) computation the normalization
constant (2) is never computed explicitly but averages are
implicitly normalized to the set of configurations that are
explored in the MC simulation, i.e., to the pocket () or (),
that one has implicitly chosen at the start of the computa-
tion by choosing N =M or N =M — 1. If we try to es-
timate the ground state energy per particle e = Eg/ N of
a truly macroscopic system, the answer is clear as long as
the concentration of vacancies is small so that they can be
considered as independent: If e, = Ej;—y/N is the energy
per particle from simulation of the C state and E| = Ney +
Ae, the total energy from simulation of the I state with one
vacancy, the inferred ground state energy of the extended
system is

e = ey + X,Ae,, 3)

where X, is the average concentration of vacancies that
should be obtained from an analysis of Q 5 of the extended
system. This is the true variational energy of W; and not e.
Notice that e; will differ from e, only by a very small
amount if X, is well below 1%.

At present the best variational representation of solid
“He is given by a SWF [16], Wgyg. Also Wi,y has a
classical interpretation; in fact, the normalization of
W2 coincides with the configurational partition function
of a classical system of suitable flexible triatomic mole-
cules [24] because every particle has two subsidiary vari-
ables in Wy For this equivalent classical system the
concentration X,, of vacancies is finite since in the previous
argument it makes no difference that the “particles” are
monoatomic or molecular species. We also conclude that
Wowr describes a quantum solid with vacancies in it and
the ground state energy of an extended system is given by
Eq. (3) [25]. } .

We now consider the size of X,,. An estimate of X, for a
Jastrow function has been performed some years ago [26],
but unfortunately W; gives an unrealistic representation of

solid “He because ¥, gives a much too large localization
of atoms. For Wqwg, X,, is not known and this is a priority
computation for the future.

We consider now the exact ground state as given by
SPIGS [12]. The projection maps the quantum problem
into an equivalent classical problem of flexible linear
polymers with the number D of monomers equal to D =
2P + 1, where P is the number of projections. Such a
classical system has vacancies for any finite P, but the
concentration X,, of vacancies might vanish in the limit
P — o0, Only a study of X,, as a function of P will be able
to say whether ground state vacancies are present in the
exact ground state of solid “He.

Vacancy induced BEC.—Given that vacancies might
well be part of the ground state of solid “He, we present
a microscopic calculation of the one-body density matrix
p1 in the presence of vacancies with the exact SPIGS
method. Computation of p,(7, ') is performed by cutting
one of the linear polymers at the central monomer and
sampling the distance |F — 7| of the two cut ends. Notice
that in SPIGS computations, contrary to the case of PIMC
calculations, no exchange moves between polymers have
to be performed; this is a great advantage due to ergodicity
problems arising from exchange moves. In any case, the
calculation of p; by means of SPIGS in the solid is
computationally very intensive due to the low relaxation
(to get converged results one needs more than 107 MC
steps) and to the large number of degrees of freedom (i.e.,
coordinates of monomers) as the imaginary time evolution
7 becomes greater. There is also the necessity to compute
p1 as a function of 7 in order to control the convergence.
We have worked with a box which fits M = 108 fcc lattice
sites and with N = 107 and N = 106 so that we have one
or two vacancies which corresponds, respectively, to X,, =
0.93% and X,, = 1.89%. In Fig. 2 we show the results for
three values of 7 [27] as well as the variational SWF results
at density 0.031 A3, which corresponds to a pressure of
about 54 bar. p, has been computed with 7 — 7 along the
nearest neighbor direction ([110] in fcc). One can see that
p1 develops a plateau for distances greater than about 5 A,
and this is a signature of BEC. We have estimated the
condensate fraction by averaging the plateau for distances
greater than 5.5 A, and the values with their statistical
uncertainty are shown in Fig. 2. The value of ng is only
weakly dependent on 7 and similar to the SWF results.
With SWF it is known that n, for the hcp lattice is very
similar to the fcc one [15]. p; in the plateau region has
oscillations and the maxima correspond to multiples of the
nearest neighbor distance; this can be interpreted in terms
of a sequence of jumps of atoms which make use of the
vacancy. This process is distinct from the vacancy-
interstitial pairs that were found to be important for the
commensurate state in a SWF computation [9]. In order to
explore larger distances, we have computed p; with SWF
also for a system with N = M — 1 = 191, which corre-
sponds to X, = 0.52%. One sees from Fig. 2 the persis-
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FIG. 2. One-body density matrix p, computed in fcc solid *He
at p = 0.031 A3 with SPIGS (a)—(c) for different imaginary
time evolutions 7 and with SWF (d). N = M — 2 = 106 (dashed
lines); N =M — 1 =107 (continuous lines); N=M — 1 =
191 (long dashed lines). The dotted lines represent statistical
uncertainty.

tence of the oscillations around a finite plateau. The three
SWEF computations give ng, which scales with X,, within
the statistical uncertainty. In the case of SPIGS, n, does not
scale so well with X,, and this might arise from the
presence of some correlation between the two vacancies.
We consider more reliable the SPIGS result with one
vacancy so that we estimate a condensate fraction of about
0.23 “He atoms per vacancy at the pressure of about 54 bar.
Therefore vacancies are very efficient in inducing BEC.
Using, as an order of magnitude, Tggc of an ideal gas with
the effective mass [28] m* = 0.35my,., we get Tppc =
11.3 X (X,)%3; for example, Tgpc=0.2K for X, =
23X 1073 and Tgge = 1073 K for X, = 107%. There-
fore we expect supersolidity at low T in bulk solid “He if
vacancies are present either as part of the ground state or as
the nonequilibrium effect.

Conclusion.—On the basis of an exact microscopic the-
ory of solid “He, the SPIGS projector method, we have
shown the presence at the same time of spatial order and of
BEC when a finite concentration of vacancies is present at
T = 0 K, i.e., if the ground state is incommensurate. Based
on the argument by Leggett [3] this system would show
nonclassical rotational inertia effects. In addition, we have
shown that the question of whether the ground state of bulk
solid “He is C or I is still undecided but we noticed that the
ground state is I for the best variational WF. The quantita-
tive evaluation of the concentration of vacancies X,, for the
SWF and the study of what happens to X,, under projection
with the SPIGS method remain an open problem.
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