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Nonlinear Theory for Relativistic Plasma Wakefields in the Blowout Regime
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We present a theory for nonlinear, multidimensional plasma waves with phase velocities near the speed
of light. It is appropriate for describing plasma waves excited when all electrons are expelled out from a
finite region by either the space charge of a short electron beam or the radiation pressure of a short intense
laser. It works very well for the first bucket before phase mixing occurs. We separate the plasma response
into a cavity or blowout region void of all electrons and a sheath of electrons just beyond the cavity. This
simple model permits the derivation of a single equation for the boundary of the cavity. It works
particularly well for narrow electron bunches and for short lasers with spot sizes matched to the radius of
the cavity. It is also used to describe the structure of both the accelerating and focusing fields in the wake.
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FIG. 1 (color). (a) Electron density with the defined blowout
radius rb��� and (b) ���� Jz=c� profile from a PIC simulation.
In plasma-based acceleration, a plasma wave with a
phase velocity close to the speed of light is driven by a
short intense particle or laser beam. When a laser pulse is
used it is called laser wakefield acceleration (LWFA) [1]
and when a particle bunch is used it is called plasma
wakefield acceleration (PWFA) [2]. Most analytical theo-
ries to date on plasma waves and wakefield excitation have
either been restricted to linear fluid theory [2–4] or one-
dimensional nonlinear fluid theory [5,6]. In recent PWFA
and LWFA experiments [7,8] the wakes are excited in the
so-called blowout regime where electrons are expelled
radially. In this regime neither fluid nor one-dimensional
(axial) theory applies. These wakes are complicated be-
cause their fields are electromagnetic, relativistic mass
effects are important, and trajectory crossing occurs.

In the blowout regime all the plasma electrons are
expelled from a region around the axis, leaving behind a
uniform column of plasma ions. The column is surrounded
by a thin layer of the expelled electrons which is sur-
rounded by a weakly perturbed plasma with a thickness
of a linear skin depth. The ions pull the electrons back to
the axis in about a plasma period (or equivalently a plasma
wavelength of 2�c=!p). These electrons overshoot,
thereby creating the wake. The first oscillation or bucket
is of most interest to plasma-based acceleration. This is
illustrated in Fig. 1(a) where the electron density resulting
from a short electron bunch is plotted from a fully non-
linear particle-in-cell (PIC) simulation using the code
OSIRIS [9]. The electron bunch is propagating to the left
in the variable � � ct� z. The blowout or ion column
radius, rb, is also defined in this plot.

Creating wakefields in the blowout regime was first
investigated by Rosenzweig et al. [10] for PWFA case of
electron beam drivers. These wakefields had perfectly
linear focusing fields and had radially independent accel-
eration fields for electrons. Similar wakefields can be
excited by laser drivers. In recent work on LWFA the
term bubble regime [11], instead of blowout regime, is
06=96(16)=165002(4)$23.00 16500
used. Despite this intense interest, little theory for how
the wakefields in the blowout regime scale with the elec-
tron beam or laser beam parameters currently exists; and
no theory exists for how beam loading occurs within the
ion channel. In addition, while there are expressions for the
nonlinear frequency shift [5] for one-dimensional wakes
there is no such expression for multidimensional wakes.
Recently Barov et al. [12], Lotov [13], and Kostyukov
et al. [14] each have analyzed some aspects of the blowout
regime; however, these analyses do not predict the shape of
the ion column (bubble) or of the field structures. In this
Letter, we will present a predictive theoretical model for
wake excitation in the blowout (‘‘bubble’’) regime.

We begin with Maxwell’s equations in the Lorentz
gauge and the equation of motion for a plasma electron.
2-1 © 2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.96.165002


PRL 96, 165002 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
28 APRIL 2006
For a laser driver, we include the time averaged (over a
laser period) ponderomotive force [15]. We transform from
the (x; y; z; t) to the (x; y; � � ct� z; s � z) variables and
make the usual [15] quasistatic or frozen field approxima-
tion; i.e., we assume @s � @� in the field equations.
Maxwell’s equations then become
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where  � �� Az, r? � x̂@x � ŷ@y, and A? � x̂Ax �
ŷAy, etc. Furthermore, it can be shown that the plasma
electrons evolve as [15]
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where �� � �1� p2=m2c2 � jaj2=2�1=2 and the laser field
is written as eAlaser=mc2 � �a=2�e�i
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be shown that ��� pz=mc � 1� e =mc2 is a constant of
motion [15]. As a consequence of the constant of motion,
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 are known so too is the axial momentum. In addition, the
pseudopotential  obeys the Poisson-like equation,
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Under the quasistatic approximation, the continuity equa-
tion becomes @��c�� Jz� � r? � J? � 0; it then follows
that d


R
��� Jz=c�ds?�=d� � 0. Far in front of the driver

where the plasma is unperturbed �� Jz=c � 0, so
R
���

Jz=c�ds? � 0 for all �. This condition gives  a global
definition, which is critical for the existence of the constant
of motion (see above). In terms of  , the axial electric field
of the wake, Ez, can be written as
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In this way, the wakefield Ez is completely described in
terms of  , which can be obtained from the Poisson-like
Eq. (4) given the source on the right-hand side (RHS). The
source term depends on (i) the ion charge density, which is
a constant (enp) for all r, (ii) the charge and current of a
narrow sheath formed by the blown-out electrons around
rb���, and (iii) the charge and current of the electrons
within a skin depth beyond the narrow sheath. Character-
izing the source term in terms of rb and determining rb as a
function of � [via Eq. (11) below] are the central assump-
tion and result of this Letter.

At this point, we will adopt normalized units, where time
is normalized to !�1

p , velocities to the speed of light, c,
mass to m, and charge to e. We will begin by assuming
16500
the wake is excited by a bi-Gaussian electron driver with
a normalized density profile nb � 
N=�2��3=2�2
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z . We will address how the formalism is

modified for a laser driver later. We assume there is azimu-
thal symmetry and rapidly obtain solutions for Eqs. (1) and
(4) because of their Poisson-like form. Inside the ion
channel, i.e., for r � rb and for r �r,

� � �0��� �
r2

4
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Az � Az0��� � ���� lnr; (7)

where ���� �
Rr�r

0 rnbdr, �0��� � ��r � 0; ��,
Az0��� � Az�r � 0; ��, and we assume jz � �cenb. In
addition, combining the Poisson-like Eq. (1) for Ar with
the gauge condition, leads to the relationship Ar=r �
�d� 0=2 � �Ez0=2, for r � rb where  �r; �� �  0��� �
r2=4. If the blown-out electrons form a narrow sheath
then the electrons within this layer move nearly tangen-
tially to the ion column boundary. The fact that there is a
narrow sheath is confirmed in simulations, e.g., Fig. 1(a).
Therefore, the ‘‘trajectory’’ of the boundary, rb���, can be
obtained from the equation of motion for an electron on the
boundary. The force on a plasma electron at r � rb��� or
for a beam electron can be written as
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where the first term is due to the space charge of the
unshielded ion column, and the second and the third terms
are due to the electric and magnetic fields from the electron
beam and to plasma radial currents, respectively. Note that
the focusing force on a beam electron with vz � 1 is due
only to the space charge of the ion column because the
electric and magnetic forces from the plasma currents and
the self-forces cancel each other. On the other hand, for
plasma electrons for which �1< vz � 1 the force in-
volves the full electromagnetic character of the wake.
Inserting Eq. (8) into the equation of motion for a plasma
electron [Eq. (3)], dp?=d� � F?=�1� vz�, rewriting the
left-hand side as dp?=d� � d
�v?�=d� � d
��1�
vz�dr?=d��=d� � d
�1�  �dr?=d��=d� [using the con-
stant of motion ��1� vz� � 1�  ], and using the expres-
sion for 1� vz obtained before, the equation of motion for
a plasma particle at rb can now be written as
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where  �  
rb���; �� �  0 � r2
b=4 is the  value along

rb. This equation rigorously describes rb��� but it is not
closed since  0��� is as yet unspecified. In order to get a
closed equation for r � rb���, we need to cast  0��� in
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FIG. 2 (color). (a) comparison of the trajectories of rb���
(beam center is at � � 5); (b) comparison of the accelerating
field Ez���: PIC simulation (red), calculation by a constant
profile (blue), calculation by a varying profile (brown, �L � 1
for � from 1 to 8, and decreases linearly to 0.2 at � � 15).
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terms of rb���. Such a relation can be approximately
obtained as follows. This is the key simplification in this
Letter.

The source term for  �r; �� is �� Jz. At each �, ��
Jz � �ion � �e � Jze, where �ion � 1 for all r and �e �
Jze is zero for r < rb, rises sharply within a sheath of
thickness of �s��� [simulations and analytic arguments
[3] show that it is small compared with rb��� for most of
the ion channel, i.e., �s=rb � 	� 1, but its absolute value
can be significant, e.g., for rb � 10, 	� 0:1, �s � 1]
and gradually falls to unity in a width �L��� [a region
where the plasma electrons respond nearly as they would
be in a linear wake, �L��� � 1 from linear theory]. This is
illustrated in Fig. 1(b) where the profile ���� Jz=c�
versus r is plotted for an arbitrary value of � from
Fig. 1(a). � � �s ��L � 	rb � �L is also defined in
Fig. 1(b). The structure of �� Jz enables us to write
 0��� approximately in terms of rb���, �L, and 	, e.g.,
 0�rb���;�L; 	�, by assuming a parametrized profile. We
find that very accurate results can be obtained using a
very simple profile, which assumes a constant n� over

the sheath and the linear region, where n� �
r2
b

�rb���2�r2
b

for rb < r < rb � �. This is illustrated in Fig. 1(b). Inter-
estingly, the results are very insensitive to the forms of the
profiles, but obviously, more refined profiles can be used.
For this profile,
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Recall that once rb��� is solved for then  �r� is known
[Eq. (10)] and Ez�r�0;���d 0=d��d
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, which comes from the laser’s ponderomotive force.

We show the accuracy of our model by directly integrat-
ing Eq. (11) for a bi-Gaussian electron beam driver. We
choose kp�r�0:1 and kp�z�

���
2
p

and electron initial po-
sitions r0� rm. In Fig. 2(a), we plot the trajectories of
rb��� for different values of beam charge, i.e., eN, and
hence different maximum blowout radius (rm varies from
16500
0.18 to 4) and compare these trajectories with the blowout
boundaries extracted from fully nonlinear PIC simulations.
The theory and PIC simulation results for rb are essentially
identical for each case. We used �s�0:1rb and �L � 1 for
each case. Varying �L from 0 to 3 leads to only a 20% de-
viation in both the blowout radius and the ion channel
length.

Figure 2(b) compares the wakefields, Ez, calculated
from the model with those from PIC simulations. The
agreement is also excellent until near the rear of the blow-
out region. We have determined that much of the disagree-
ment comes from assuming constant �s=rb and �L, which
is not exactly true near the rear of the first bucket. In
Fig. 2(b) (1), we also plot the wakefield which is calculated
using a �L which depends on �. This gives better agree-
ment near the rear of the ion column. Although this simple
model cannot give exact predictions for Ez near the very
rear of the ion channel, it provides the correct trajectory for
rb and hence the correct structure of the wakefield, e.g., the
peak decelerating field, the useful accelerating field, the
useful transformer ratio, and the wake’s wavelength for
arbitrary shaped bunches. It also describes quantitatively
how the wakefield’s structure changes as rm increases. We
also note that it is accurate enough to treat the beam
loading problem. Figure 2(b) (2) shows the agreement
between the theory and simulation where a drive beam
and a trailing beam are used. The agreement is exact within
the trailing beam. More details on beam loading will be
given in a separate publication.

Much can be learned by examining Eq. (11) in two
distinct regimes: namely, the nonrelativistic blowout re-
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gime where rm � 1 and the ultrarelativistic blowout re-
gime where rm  1. In the first limit, connection to the
linear fluid can be made, and this will be described in a
longer paper. In the ultrarelativistic limit where rm  1,

� 1, and 
r2

m * 4, Eq. (11) reduces to:
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The driver bunch length is typically much shorter than
the nonlinear ion channel length, so we can ignore the
driving term on the right-hand side for much of the trajec-
tory. The equation for a circle is rb
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while Eq. (12) gives rb
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d�2 � 2
drbd� �
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right-hand side set to zero. Near the top of a circle
drb=d�! 0, so the trajectory rb��� maps out a circle until
the rear of the blowout region. The effect of the ‘‘extra’’

drb=d��2 term is to bend the trajectory downward more
quickly as drb=d� becomes large. This is indeed what is
observed in Fig. 2(a). We can rewrite the left-hand side of
Eq. (12) as d

d� 

1
2 rb

drb
d� � � �

1
2�

1
2 

drb
d� �

2, and since Ez��� �
1
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d� when 
��� can be neglected for rb  1, we see that

Ez has a slope @�E � �1=2 at the top of the channel and
the slope increases as drb=d� increases leading to the
characteristic spike. This is seen in Fig. 2(a) where a line
with a slope of �1=2 is shown for convenience.

For most situations of interest, the driver is sufficiently
short that at the point where rb��0� � rm the right-hand
side of Eqs. (11) and (12) can be neglected. For � > �0 and
for rm * 4 the trajectory for rb maps out a circle and the
ion column is a sphere, i.e., a bubble. The value of Ez � 0
at � � �0, and Ez decreases linearly from 0 to �rm=2 in a
distance Lc � rm. Therefore, the nonlinear frequency or
wave number is !NL �

�
rm
!p and in term of the amplitude

Ezmax � rm=2, !NL �
�

2Ezmax
!p. Interestingly, the same

relationship holds for nonlinear one-dimensional plasma
oscillations [5] although the physics is completely differ-
ent. In these 3D wakes the wakefields are electromagnetic
in character. Besides the accelerating axial electric field,
Ez, there are transverse electric, Er, and magnetic fields,
B�. The Er fields come from the ion column, Erion � r=2,
and the radial plasma current, ErEM � �r=4 while B�
comes from the radial plasma current, B�EM � �r=4.
The total focusing field on a beam electron is Er � B� �
r=2 � Erion.

We conclude by describing the differences between
wake excitation by short (!p� & 1) electron and laser
drivers. For the electron driver case, the bunch is typically
narrow,�r � rm, and the ultrarelativistic limit is generally
not reached. For example, in the E164X experiments [8],
N � 1:8	 1010, �z � 30 m, �r � 10 m, and the
plasma density was 5	 1016 cm�3. Therefore, nb=np �
7 and ���� � 1. To estimate rm, we use Eq. (11) and solve
for the equilibrium radius, req, by dropping the first two
16500
terms in the left-hand side. The value of rm � 2req [3]
which is�2 for this case. On the other hand, narrow lasers
(W0!p=c� 1) cannot be guided and unlike the space
charge force of an electron beam, the ponderomotive force
only extends out to the edge of the laser. Simulations show
that the best defined sheaths are generated when W0 � rm.
Under this condition, electrons at an initial radius near W0

will experience an impulse before the ion channel forces
have fully developed. These electrons then move outward
until the ion channel force brings it to rest. For other values
ofW0 the simple sheath model [Fig. 1(b)] does not work as
well. One can estimate rm by balancing the ion channel
force by the ponderomotive force in vacuum leading to
rm � 2

�����
a0
p

[14,16,17]. The ultrarelativistic limit, rm * 4,
can be reached when a0 * 4 and W0 � rm � 2

�����
a0
p

, which
requires a laser power P � 
a2

0W
2
0=32�Pc � 8Pc where Pc

is the critical power for relativistic self-focusing [16]. For
current state-of-the-art lasers [7,18], 15 & P & 100 TW,
reaching the ultrarelativistic blowout (bubble) regime
requires the use of plasma densities between 2	 1019 *

np * 2	 1018 cm�3, respectively.
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