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Dynamical organization of connection weights is studied in scale-free networks of chaotic oscillators,
where the coupling strength of a node from its neighbors develops adaptively according to the local
synchronization property between the node and its neighbors. We find that when complete synchroniza-
tion is achieved, the coupling strength becomes weighted and correlated with the topology due to a
hierarchical transition to synchronization in heterogeneous networks. Importantly, such an adaptive
process enhances significantly the synchronizability of the networks, which could have meaningful
implications in the manipulation of dynamical networks.
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Real-world complex networks are interacting dynamical
entities with an interplay between dynamical states and
interaction patterns. While topological studies have re-
vealed important organization principles in the structures
[1], a more complete understanding would require charac-
terizations beyond the topology. There are recently several
approaches in this direction. For example, (i) the study of
more realistic weighted properties of the connections [2,3].
The analysis of some real networks has shown that the con-
nection weights are often highly heterogeneous and cor-
related with the degrees [2]. The Barabasi-Albert (BA)
model [4] has been generalized to take the connection
weights into account [3]. (ii) Intensive investigations of
synchronization dynamics of oscillatory networks [5—8].
However, most of these works consider networks that do
not change with the dynamics, and we call such networks
crystallized networks (CNs) [9]. (iii) The growing attention
on unified studies of the coevolution of dynamical states
and network structures [10—14]. Models of adaptive net-
works (ANs) have been proposed, e.g., evolving of nodes
due to fitness in interacting species [11], reinforcement of
connection strength [12] or rewiring of links [13] due to
payoffs among agents playing games; or adaptive changes
of coupling strength according to the state distance in
globally coupled chaotic maps [14] in a desynchronized
regime.

Significant recent interest in synchronization is related
to the identification of the network structures that enhance
or optimize the global synchronizability. The optimal (un-
weighted) configurations obtained by optimization algo-
rithms are entangled networks with rather uniform degrees
[15], as consistent with graph-theoretical predications
[7,16]. However, such topologies do not fit to most realistic
network systems. Many complex networks, where syn-
chronization is relevant, are often heterogeneous in topol-
ogy and are naturally weighted, such as networks of
cortical areas [17], networks of cities in the synchroniza-
tion of epidemic outbreaks [18] and spreading [19]. Thus
more interesting is the influence of weighted properties on
the synchronizability in degree heterogeneous networks
[7,8,16], since suitably weighted connections can enhance
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significantly the synchronizability without changing the
heterogeneity in the topology [7,16]. A question of sub-
stantial importance in the light of ANs is whether such
weighted properties for enhanced synchronizability can be
self-organized.

In this Letter, we study adaptive weight organization and
focus on the impacts of heterogeneous topology on the
weight structure and on the enhancement of global syn-
chronizability. We introduce a simple, but generic, scheme
of weight adaptation according to a local synchronization
property, which leads to global synchronization of the
whole network. We mainly show that (i) the network
becomes weighted and the weights are negatively corre-
lated with the degrees, and (ii) importantly, the adaptation
enhances significantly the synchronizability compared to
unweighted CNs.

We consider N coupled identical chaotic oscillators

N
x; = F(x;) + Z Gij[H(Xj) — H(x,)], (D
j=1

where F(x) is the dynamics of individual oscillators and
H(x) is the linear output function. G = (G;;) is the
weighted coupling matrix, G;; = A;;W;;, where A;; is the
binary adjacency matrix and W;; >0 is the coupling
strength from node j to node i if they are connected. In un-
weighted networks, W;; = 1 is uniform for all links. In pre-
vious studies of CNs [5-8], G;; = o-G?]-, where G?j is fixed
and o controls the overall strength of the connections.

Here we study ANs where the coupling strengths W;; is
controlled by the local synchronization properties of the
nodes. To achieve a global synchronization of the network,
it is natural to assume that each node tries to synchronize to
its neighbors by increasing the coupling strength from
them. We suppose that the strength to a node i from all
its k; neighbors increases uniformly among the k; connec-
tions, in order to suppress its difference A; from the mean
activity of its neighbors, namely,

Gi;(1) = A;Vi(1), Vi=yA/0+4), 2
where A; = [H(x;) — (1/k;)¥ ;A;;H(x;)|, and y > 01is the

© 2006 The American Physical Society


http://dx.doi.org/10.1103/PhysRevLett.96.164102

PRL 96, 164102 (2006)

PHYSICAL REVIEW LETTERS

week ending
28 APRIL 2006

adaptation parameter. We assume that the initial coupling
strength is small, a random value. Such an adaptation
scheme is probably the simplest, but it is based on a generic
dynamical feedback principle, e.g., adopted in controlling
a chaotic oscillator to stable dynamics [20]. With this
adaptation scheme, the input weight (W;; = V;) and the
output weight (W; = V;) of a node i are in general
asymmetrical.

We consider scale-free networks (SFNs) (matrix A)
generated with the BA model [4]. Starting with M fully
connected nodes (with labelsi = 1, 2, ..., M), at each time
step T=1,2,...,(N — M) a new node (with label i =
M + T) is added and connected to M existing nodes in
the network. Thus, nodes with smaller i in general have
larger degrees k;. The resulting SFNs have a degree distri-
bution P(k) ~ k', with I' =3 and the minimal degree
kmin =M.

First we briefly review the stability of CNs [6],

N
X, =Fx)+o Z GY[H(x;) — H(x;)] (3)
=1

The variational equations of Eq. (3) with respect to the
complete synchronization state (x; =s, V i) is diagonal-
ized into N eigenmodes of the form ¢&; = [DF(s) —
oA;H(s)]&;, which are only different by the eigenvalue
A; of the Laplacian matrix L = (L;;) [6], where L,;; =
=Gy, + 6,3 Y GY). We treat the case that the spectra of
eigenvalues are real and can be ordered as 0 = A| =
Ayt o+ = Ay, with A; = 0 associated with the invariance
of the state s. The largest Lyapunov exponent (LLE) A(e)
of the modes as a function of € = oA;, known as the
master stability function (MSF) [6], is negative in an
interval €; < € <€, for general output function H(x).
The state s is stable when all the nontrivial eigenmodes i =
2 have negative LLE, namely,

61<0')12S"‘SO'/\N<62. (4)

For the special case €, = oo, the state s is stable for o >
€,/A,. In the general case of finite €,, s is stable for
€/ <o<e/Ay if the eigenratio R = Ay/A, <
€,/€, = R.. However, if R > R,, Eq. (4) can never be
fulfilled, and it is impossible to synchronize the networks.
It is R that is minimized using optimization algorithms in
Ref. [15].

In ANs, the weights W;; and suitable o values are
obtained adaptively. Synchronization can be achieved for
many large networks which are otherwise not synchroniz-
able when unweighted. This general behavior is illustrated
by the chaotic Rossler oscillator: X = (x, y, z) and F(x) =
(—0.97x — z,0.97x + 0.15y, x(z — 8.5) + 0.4) and a cha-
otic foodweb model [21]: F(x) = (x — 0.2g(x,y), —0.7y +
0.2g(x,y) — xz, —10x(z — 0.006) + xz), where g(x,y) =
xy/(1 + 0.05x).

We consider both cases €, = o and €, < . The case
€, = oo can be realized with H(x) = x = (x, y, z) since

A(e) = Ap — €, where A > 0 is the LLE of the isolated
oscillator x = F(x). Then, the ANs are synchronizable for
any nonvanishing y > 0, with faster converging rates at
larger y values. The transition to synchronization is shown
in Fig. 1(a). Starting from random initial conditions on the
chaotic attractors, the local synchronization difference
A; > 1, and the input weights of each node increase
uniformly in the whole network, ie., W;; = V(1) = yt
[Fig. 1(a), inset]. After a short period, the weights V; of
different nodes develop at different rates and converge to
different values V;: the input strength is smaller on average
for nodes with larger degrees k; (smaller i) [Fig. 1(b)].

The dependence of the input strength of a node on its
degree becomes more evident when we plot the average
value V(k) = (1/Nk)Zk,.:k‘7i for all the N, nodes with
degree k, in a larger network of N = 1000 nodes
[Fig. 2(a)]. The results display a power law

V(k) ~ k7", (&)

with an exponent § = 0.48 % 0.01 for both oscillator mod-
els. Importantly, this scaling is also robust to variation of
network parameters, such as the minimal degree M
[Fig. 2(b)] and the system size N [Fig. 2(c)]. It holds also
for various orders of magnitudes of the adaptation parame-
ter y [Fig. 2(d)]. We have also examined another network
model which generates SFNs with a varying exponent I
due to aging affects of the nodes [22], and the scaling in
Eq. (5) with the same exponent # holds for a broad range of
I" values, and for exponential degree distributions, too.

Equation (5) results from a hierarchical transition to
synchronization in the network due to heterogeneous de-
grees. Since W;;(r) = V;(¢), Eq. (1) can be rewritten as
x; = F(x;) + S;(n[H(X;) — H(x;)], where X; = (1/k;) X
Z?’:IA[ ;X; is the local mean field of all the neighbors
connected to the oscillator i. Here S;(r) = k;V;(¢), the total
input weights of node i, represents the infensity of the node.
In random networks the local mean field X; of nodes with
k; > 1 can be approximated by the global mean field of the
network, X; = X, and we get
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FIG. 1 (color online). (a) Transition to synchronization in an
AN of Réssler oscillators, indicated by the synchronization error
averaged on the nodes: E(r) = (|x; — (x;)|). Inset: the input
strength V;(f) vs time for three nodes. (b) The weighted coupling
matrix G crystallized after the adaptation (for the foodweb
model). Here M = 5, N = 100, and y = 0.02.
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FIG. 2. The average input weight V (k) of nodes with degree k
as a function of k for the Rossler oscillators (O) and the foodweb
model (@) (a) and its dependence on various parameters: M (b),
N (c), and 7y (d). Results in (b), (c), (d) are averaged over
10 realizations of the networks with random initial conditions.
For clarity, only the results for the Rossler oscillators are shown
in (b), (c), (d) and are logarithmically binned. The solid lines in
(a), (b), (c), (d) have a slope —0.48.

x; = F(x;) + S;(0)[H(X) — H(x,)] (6)

Under this approximation, the oscillators are forced by a
common mean field signal H(X) with the forcing strength
S:(r). When the adaptation starts, V;(r) = yt [Fig. 1(a),
inset], so that S;(r) = yk;r. As a result, nodes with larger
degrees k are coupled more strongly to the forcing signal
H(X). When H(x) = x, the LLE of Eq. (6) A(S;) = Ap —
S;, so that nodes with larger degrees k will synchronize
faster to the mean activity of its neighbors. Hence A in
Eq. (2) decreases with k. Because of this hierarchical
transition to synchronization, nodes with larger degree k
have smaller increasing rates of the weight V(k) in Eq. (2),
which results in the relation of Eq. (5). This mechanism
does not depend on particular oscillators and degree
distributions.

Now we analyze the typical case of finite €,. In the
Rossler oscillators, this happens, e.g., with H(x) =
(x,0,0). In the foodweb model, the ecologically realistic
coupling (immigration) [21] denoted by H(x) = (0, y, z)
results in a very similar MSF [Fig. 3(a)]. We find that an
almost linear decrease of A(e) in the small € region is a
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FIG. 3. (a) MSF A vs €. Solid line: Rossler oscillator with

H(x) = (x,0,0); dotted line: foodweb model with H(x) =
0,y,2). (b) o (@), oA, (O), and oAy (A) vs 7y in adaptive
networks of Rossler oscillators with M =5, N = 1000, and
H(x) = (x, 0, 0). Dotted lines: the two thresholds €; and €,.

common property of MSF for general H(x) and F(x). With
small enough 7, the ANs are operating in this region in the
beginning of the adaptation and the hierarchical transition
to synchronization occurs basing on Eq. (6). In our simu-
lations with networks as large as N = 10* (BA model,
M =5), synchronization can always be achieved by the
adaptation of Eq. (2) if it is not too fast, i.e., ¥y = ., where
v. depends slightly on N and the oscillator models. The
resulting weighted networks display the same power-law
behavior in Eq. (5), but with slightly different exponents:
6 = 0.54 = 0.01 (Rossler oscillator) and 8 = 0.36 = 0.01
(foodweb). However, in unweighted CNs, i.e., G;; = 0A;;,
synchronization becomes impossible for N = 1000
(Rossler) and N = 500 (foodweb).

We stress that the weighted structures [Eq. (5)] are
almost crystallized (saturated) after a short period of adap-
tation [Fig. 1(a), inset]; afterwards the transition to syn-
chronization is similar to CNs. The strongly enhanced
synchronizability by the adaptation thus can be understood
by the stability of the CNs [Eq. (3)], by comparing the
weighted networks (G° = G) with the unweighted coun-
terparts (G = A). Here G obtained by the adaptation has
been normalized so that (G; ja,~1 = 1 as in the matrix A.

We have calculated o and the spectra of the weighted
networks obtained at various y values, as shown in
Fig. 3(b) for the Rossler oscillators. When vy is very small,
the weight adaptation is adiabatic and o A, is slightly above
the lower threshold €. Both oA, and oAy increases as 7y
increases till the critical value vy,. For vy > v, the adapta-
tion process generates in the beginning a similar weighted
structure as for y < y,, but in a moment, oAy > €, the
synchronization errors grow again, leading to desynchro-
nization of the whole network.

The synchronizability can be assessed further by the
eigenratio R = Ay/A, [6,7]. If the adaptation leads to al-
most saturated weighted networks with R < €,/€; in the
early stage, it will achieve global synchronization. R is
statistically independent of small y. We calculate R for the
weighted networks after the adaptation and compare to R
of unweighted networks, as a function of N [Fig. 4(a)]. As
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FIG. 4. The eigenratio R as a function of N (a) and
Smax/Smin (b), averaged over 20 realizations of the networks.
The solid lines are power-law (a) and linear (b) fitting. The
weighted networks are obtained by the adaptive process with the
conditions: M =5, y = 0.002 with H(x) = (x,0,0) for the
Rossler oscillators ((J), and H(x) = (0, y, z) for the foodweb
model (A). The networks are synchronizable if R < R, in (a):
Rossler oscillators, R, = 40 (dashed line), foodweb model,
R, = 29 (dashed-dotted line).
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consistent with our recent graph-spectral analysis [16], R
increases linearly with Sy« /Smin [Fig. 4(b)], for both net-
works. S,.x and S.;, are the maximum and minimum of
the intensities S;, and Syux/Simin = kmax/kmin ~ N'/2 in the
unweighted BA model. In ANs, we have S,/ Siin ~ N/2
with B =1—6, since S;=k;V;~kP according to
Egs. (2) and (5). Thus R ~ N¢, with « =% and « =§
for the unweighted and weighted networks, respectively
[Fig. 4(a), solid lines]. The adaptation process enhances
synchronization since Sp,,/Smin 1S significantly reduced
during the transition to synchronization. While the un-
weighted CNs are already impossible to synchronize for
N >N, = 10° (Rossler) and N; = 500 (foodweb), in
sharp contrast, the ANs are synchronizable till N, = 8 X
10° (Rossler) and N, = 1.5 X 10* (foodweb). The degree

of enhancement can be expressed as N,/N;, = Rl/ B for
SFNs [P(k) ~ k~'] regardless of I'. Since 8 < 1 (~0.5), a
significantly enhanced synchronizability is expected for
general F(x) and H(x) with R, = €,/€; > 1.

It is interesting to compare the weighted properties
resulting from the adaptive synchronization to those ob-
served in real networks, including scientific collaboration
networks [2], metabolic networks [23], or airport networks
[2,23]. There it has been shown that the intensity S; of the
nodes, defined as S; = Zj.vzl A;jW;; in general networks,
provides a significant measure integrating the information
of connectivity and weights. The average value S(k) over
nodes of degree k increases as S(k) ~ k#, with the expo-
nent 3 varying as a function of the specific network. In our
adaptive networks, we also have S(k) ~ k#? with 8 ~ 0.5.
The case 8 < 1 corresponds to a saturation in the intensity
of the nodes with large degrees and is also observed in
realistic neuronal networks [24] where synchronization
plays an important role in the information processing.
Importantly, we have shown that the ability of the networks
to achieve synchronization is significantly enhanced, since
the heterogeneity of the intensities is reduced adaptively.
The detailed mechanisms underlying the weight and topo-
logical structures of specific real networks are often differ-
ent, e.g., synaptic plasticity in neuronal networks [25],
degree-dependent traffic load in airport networks [26], or
overload-driven evolution in electric grids [10]. A general
principle beyond these mechanisms is an enhanced or
optimized functionality of the particular network systems
due to the interplay and the coevolution of the network
structure and dynamics. Here we consider the idealized
case of global synchronization. More realistic systems such
as brain displays a scale-free organization of the synchro-
nization patterns [27] arising from the underlying hierarch-
ical complex neural networks [17]. Understanding the self-
organization of such large-scale complex structures and
dynamics is still a big challenge.
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