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Quantum Accelerator Modes from the Farey Tree
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We show that mode locking finds a purely quantum nondissipative counterpart in atom-optical quantum
accelerator modes. These modes are formed by exposing cold atoms to periodic kicks in the direction of
the gravitational field. They are anchored to generalized Arnol’d tongues, parameter regions where driven
nonlinear classical systems exhibit mode locking. A hierarchy for the rational numbers known as the
Farey tree provides an ordering of the Arnol’d tongues and hence of experimentally observed accelerator

modes.
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Precise control of the state and time evolution of quan-
tum systems is of critical importance in many areas of
physics. Tailoring wave packets in Rydberg systems [1],
producing single photons on demand [2], creating coherent
superpositions of macroscopic persistent-current states [3],
and controlling the production of multiparticle entangle-
ment [4], are prominent examples of ‘“‘quantum state en-
gineering.” Although almost perfect control has been
achieved over these systems, this can rapidly lose effi-
ciency when influenced by decoherence or noise. Addition-
ally, generic features of strongly coupled quantum systems
allow for novel and often robust strategies of quantum
control. In such cases, studied in much detail in the area
of quantum chaos, peculiar eigenstates emerge which ex-
hibit unexpected localization properties and dynamics, and
are remarkably inert with respect to uncontrolled perturba-
tions. Prominent examples are nondispersive wave packets
in periodically driven quantum systems [5], quantum reso-
nances [6,7], and stochastic web states [8,9]. These ““strong
coupling” quantum control schemes rely on underlying
classical dynamics, which in general is mixed regular
chaotic [10]. For such a picture to be meaningful it is in
general necessary to approach the semiclassical limit
where the classical actions accumulated along typical
eigenmodes of the system are large compared to 7. The
quantum system can then “‘resolve” the intricate phase
space structure of classically mixed regular-chaotic dy-
namics, and classical nonlinear stabilization phenomena
emerge on microscopic scales.

One of the most ubiquitous of such stabilization phe-
nomena in nonlinear classical dynamics is mode locking.
Eigenmodes of a periodically driven dissipative system are
locked in their time evolution onto the phase of an external
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drive through a nonlinear resonance phenomenon. It occurs
in applications ranging from frequency-stabilized lasers
[11] to plasma confinement in fusion reactors [12]. An
important question is: is this necessarily strictly a classi-
cal/semiclassical effect? We report that features of mode
locking occur at the quantum level even far from the
semiclassical limit. This was achieved using quantum ac-
celerator modes (QAMs) of cold atoms kicked by a pulsed
standing wave of light orientated along the Earth’s gravi-
tational field [13]. In this Letter we show that the modes
observed in these experiments can be classified according
to a number-theoretic construction known as the Farey tree
[14].

We commence by describing the experimental system
which forms the basis of our analysis [13]. To create
quantum accelerator modes in the laboratory, laser cooled
cesium atoms are exposed to a sequence of equally spaced
pulses from a standing wave of light which is far detuned
from the nearest atomic transition. Because of the ac Stark
effect, the atoms experience each d-function like pulse as a
sinusoidal potential (spatial period A/2) proportional to the
intensity of the light. A QAM is characterized by a mo-
mentum transfer, to a substantial fraction of the atoms,
which increases linearly with the number of pulses.
Figure 1 shows the momentum of the atomic ensemble as
a function of pulse period T with the accelerator modes
highlighted by the labeled curves [13]. The inset plots the
momentum distribution of a (1,0) QAM as a function of
the number of pulses. Note how the width and amplitude of
the accelerator mode (the peak which moves to the left)
remain relatively unchanged and the center momentum
increases linearly with pulse number. This can be con-
trasted with the peak near zero momentum which broadens
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FIG. 1 (color online). Density plot of experimental atomic
momentum distributions (measured in a frame falling freely
with g) after n = 30 pulses as T is varied in the vicinity of T, =
133.3 us, from 124.5 ws to 142.5 us in steps of 0.128 ws [13].
The labels (a), (b), and (c) indicate (2, 1), (3,1), and (5,2)
quantum accelerator modes, as predicted by the corresponding
Arnol’d tongues depicted in Fig. 3. Labels (d) and (e) indicate
(7,3) and (8, 3) modes. White lines are the momenta predicted
by Eq. (3). Inset shows the evolution of a typical [in this case a
(1,0)] QAM as a function of pulse number. The color bar
indicates the population scale.

as pulses are applied. Although the stability of the accel-
erator mode from pulse-to-pulse is already somewhat remi-
niscent of mode locking behavior, there are other reasons
to think of the accelerator mode in this way.

To see this, we examine the atomic center-of-mass dy-
namics using the one-dimensional &-kicked accelerator
Hamiltonian H = p%/2m + mg2 — hep[1 + cos(G2)] X
> ,6(t — nT) [15]. Here Z is the vertical position, p the
momentum, m the atomic mass, g the gravitational accel-
eration, ¢ the time, G = 47/A [16], and ¢, = Uyt,/2h,
where U, is the maximum ac Stark shift in the standing
wave and 1, is the pulse duration. The special resonant
values of T in the vicinity of which QAMSs occur experi-
mentally are T; = 27lm/(hG?) = | X 66.7 ws, with [ any
non-negative integer. Hence, € = 277 I(T/T, — 1) is a small
parameter. Translating to a frame accelerating with g, to
remove the linear potential, and taking the limit € — O the
quantum dynamics of the kicked atoms can be modeled by
the classical map [17]:

Jo,1 = J, — Ksin(6,) — sgn(e)27(), (1a)
0n+1 = 0,, + Sgll(E)Jn_H mod(277), (lb)

where sgn(e) is positive (negative) if the pulse interval T is
greater (smaller) than 77, and

0 = Gzmod(27), (2a)
J, =1, +sgn(e)al + B —27Q(n +1/2)], (2b)

with p/hG = I/|e| + B, K = ¢ lel, Q = gGT? /27, and

7 = 27IT/T,. Note that the deeply quantum mechanical
character of the atomic dynamics remains hidden in the
parametrization of Egs. (1) and (2) through the quasimo-
mentum 3,0 = B < 1, since the limit € — 0 leading to the
classical Egs. (1) leaves the finite value of 72 unaffected. By
Bloch theory, subspaces of different quasimomenta are
decoupled.

Mode locking enters the theory of QAMs via Eq. (1)
which also describes the deterministic motion of a periodi-
cally kicked classical particle on a circle. In this case 6,
and J,, are the angle and angular momentum just before the
nth kick, K is the kicking strength, and () the unperturbed
winding number. If the classical particle is additionally
subject to dissipative forces, the accessible phase space
shrinks, and Eq. (1) reduces (in the long-time limit) to the
sine-circle map [18]: 6,., = 6, — Ksin(d,) — 27(), a
paradigm in the study of mode locking. If K = 0 and ()
is a rational number n1/p, any trajectory of the sine-circle
map returns to its initial value (modulo 27) after p iter-
ations. For 0 < K < 1, mode locking is observed; over a
range of ) values around nt/p (the mode locking interval)
a periodic trajectory with rational winding number 1m/p
persists. This orbit attracts all other orbits asymptotically
in time, such that finally all have this winding number. The
widths of the mode locking intervals are exponentially
small in p, and increase with increasing K up until K =
1. The regions thus formed in ({), K) parameter space,
terminating at K = 0, {) = m/p, are known as Arnol’d
tongues [19].

Using this formalism, it is now possible to analyze the
dynamics of the QAM in the € — 0 limit. To begin we look
for stable periodic orbits in Eq. (1) such that, if (J,, 6,) is
on an order p orbit, after p pulses J, mod(27) = J,. If the
orbit is stable, then each of the p points it is composed of is
surrounded by a nonlinear resonance island, set in a chaotic
sea, where the motion is predominantly regular; the motion
in the island system approximates that of the periodic orbit.
If the orbit has winding number m/p, then J, =
Jo + 27rm. Thus, from Eq. (2), ,, (and therefore p,,) grows
linearly with time. The islands travel in momentum, result-
ing in acceleration. If a wave packet is launched within an
island surrounding a stable periodic orbit, the acceleration
of the corresponding QAM obeys

2
D= po + n (Q - g)hG, 3)
el p

precisely as observed in the inset of Fig. 1. Hence, we can
identify QAMs with nonlinear resonance islands in the
classical phase space generated by Eq. (1). This is just
another manifestation of the general mode locking phe-
nomenon we are describing here. These islands are robust
structures, as guaranteed by the Kolmogorov-Arnol’d-
Moser (KAM) theorem [20]. A quantum wave packet
initially prepared in the island travels with it, and decays
only slowly by tunneling into the chaotic surroundings. For
sufficiently small e, this tunneling is exponentially weak,
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resulting in a stable QAM. More importantly, due to the
KAM theorem the island itself is rather inert with respect
to perturbations of the Hamiltonian generating the map
Eq. (1). This robustness is inherited by the QAMSs and
shields them against experimental noise [5].

In Fig. 2 we plot a “phase diagram” to represent the
regions (tongues) where stable periodic orbits with differ-
ent values of (p, 111) are numerically observed in the ({2, K)
parameter plane. This plot contains the parameter space
explored experimentally [13] using values of T in the
vicinity of T, = 133.3 us. Close to K = 0, each of the
stable periodic orbit regions is wedge-shaped, with its
vertex at () = m/p, K = 0. Moving to higher K inside a
tongue, the periodic orbit eventually turns unstable. A
sequence of bifurcations follows, which breaks the tongue
into fragments. Fragments of different tongues intertwine
and overlap in complicated ways. A tongue may be over-
lapped by others even before breaking, and such overlaps
persist even at quite small values of K.

Using a canonical perturbation theory [20—-22] to deter-
mine an existence condition for a stable periodic orbit for
Eq. (1) with a given (p, 1), one obtains, |K| > 27/p|Q —
n/p|. In the form of an equality, this equation accurately
bounds the wedge-shaped (P, 11) tongue near its vertex.
This is shown for the (21, 8) and (5, 2) periodic orbits by
dashed lines in Fig. 2. Numerical computation and scaling
considerations reveal the ““critical region” where a tongue
breaks to be roughly located at kicking strengths K ~
2arp~3/2 [22]. Thus, the higher the period of an orbit, the
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FIG. 2 (color online). Arnol’d tongues’ structure. Different
colors identify different tongues associated with different quan-
tum accelerator modes. The dotted line marks the locus of
experimentally explored points when T ~ T,; dashed lines
bound regions for which (21, 8) and (5, 2) stable periodic orbits

exist, as specified by |K| > 27/p|Q — m/p|.

narrower the corresponding tongue, and the lower the
““critical value” of K at which the tongue begins to break.

The parameters corresponding to a specific experiment
determine a point in the phase diagram. If this point is
inside a tongue then a QAM may be observed. At fixed
pulse number n, Eq. (3) defines a curve of enhanced
population in the (7, p) plot (seen in the data of [13]
presented in Fig. 1), due to the presence of the (p, 1)
QAM. We explore the phase diagram of Fig. 2, keeping
both ¢, and n constant, while varying 7. This procedure
varies €, K and (). The results of such an experiment are
shown in Fig. 1. The locus of the experimentally explored
points in the phase diagram is a curve shown by the dotted
line in Figs. 2 and 3. This curve hits the K = 0 axis at )/ =
gGT? /27, the value of Q) corresponding to the exactly-
resonant value of the kicking period 7 = 7). This is 0.3902
when [ = 2.

Perhaps most remarkably, the values of 11 and p corre-
sponding to experimentally observable QAM are deter-
mined by the Farey hierarchy of rational numbers [14].
This representation of rational numbers is a generic feature
of mode locking phenomena normally observed in systems
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FIG. 3 (color online). Operation of the Farey recursion, mov-
ing from frames A to D, for determining the experimentally
observed (2, 1), (3, 1), and (5, 2) quantum accelerator modes. The
dotted line indicates the locus of the experimentally explored
points, while the labels (a), (b), and (c) mark the regions in which
accelerator modes are observed. The labels correspond to those
used in Fig. 1.
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with dissipation. In this hierarchy all rational numbers in

[0, 1] are constructed as follows: Start from the pair (2, 1

1
At the second level the fraction § = 9! is introduced so

that the series consists of (Y,1,1). On the next level the

1°2°1
fractions 1 = 91 and % = 11 are added. This process is

continued so that if r; =l and r, =32 are adjacent

irreducible fractions at some level, the first rational to be
added between them at the next level is their Farey mediant

+ . . -
—lgi +;:2 . At no level can a rational with a denominator

smaller than p; + p, be found between r; and r,. At each
level the interval [0, 1] is thus divided by the Farey frac-
tions into Farey subintervals. As the experimental line
approaches €)' in Fig. 3, it successively intersects tongues
specified by values of (p, m); these values determine the
observed QAM. The ratios n1/p are increasingly close
approximations to {)'.

To determine the tongues (and hence QAMs) appearing
in the experiment, we start from orbits with small p. In
Fig. 3(a) the (1,0) and (1, 1) tongues are presented (their
vertices, at K = 0, are outside the boundaries of Fig. 2).
These correspond to the first numbers in the Farey hier-
archy. The dotted line marking the experimental points
intersects (within the boundaries of the figure) the (1, 0)
tongue. In the region of intersection the stable orbit (1, 0) is
found. The corresponding QAMs exhibit rapid accelera-
tion, and at n = 30 pulses they move beyond the experi-
mental window shown in Fig. 1. For higher-order QAMs,
higher orders of the Farey hierarchy are required. At the
second level the (2, 1) tongue, shown in Fig. 3(b), is
introduced, and )/ is in the interval [%, 3. The experimen-
tal line intersects the (2, 1) tongue, so a (2, 1) orbit (and
QAM) is found. Corresponding points are marked by (a) in
Figs. 1 and 3(b). The third level [Fig. 3(c)] introduces the
(3,1) and (3, 2) tongues. The experimental line intersects
both these tongues, yet only the (3, 1) QAM is observed
[intersection region marked by (b) in Figs. 1 and 3(c)]. This
is because % is further than 1 from €)', and so the inter-
section with the (3, 2) tongue takes place in a region where
K >27p~3/2. There are only narrow remnants of the
tongue, and the corresponding stable island is too small
for a QAM to be observable. The relevant Farey subin-
terval is now % to % The construction can be continued in
similar fashion. In Fig. 3(d) the (5, 2) and (5, 3) tongues are
introduced. Since both lines have a large overlap with the
(5, 2) tongue [regions marked with (c)], the corresponding
QAM appears on both sides of the resonance. Proceeding
would ideally produce all the Farey subintervals in which
Q' belongs. Faint traces of QAMs that lie outside this
recursion may also be detected, e.g., the white curve (d)
in Fig. 1 corresponds to a (7, 3) mode. Note how in the
experimental data it is disfavored in comparison with the
(8,3) mode [curve (e)], as 3 is closer than 3 to ().

This construction demonstrates how the Farey tree clas-
sifies the complex structure of overlapping tongues accord-
ing to those that are most important for the description of

QAMs observed for a specific value of (). Furthermore, as
K — 0, the value of % for the QAMs seen in the experiment

converges to (). As )/ is determined by the local value of
gravity, we obtain systematically improving rational ap-
proximants of g. The underlying classical mode locking
mechanism thus renders quantum accelerator modes a
robust tool for efficient quantum state control, deep in
the quantum realm.
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