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Quantum Lithography with Classical Light
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We show how to achieve subwavelength diffraction and imaging with classical light, previously thought
to require quantum fields. By correlating wave vector and frequency in a narrow band, multiphoton
detection process that uses Doppleron-type resonances, we show how to achieve arbitrary focal and image
plane patterning with classical laser light at submultiples of the Rayleigh limit, with high efficiency,
visibility, and spatial coherence. A frequency-selective measurement process thus allows one to simulate,
semiclassically, the path-number correlations that distinguish a quantum entangled field.
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In this Letter, our aim is to examine the role of multi-
photon resonant, narrow band measurements on the spatial
resolution limits of classical, monochromatic light inter-
ference. A fundamental limit to optical resolution arises
from the wave nature of light. This is captured by the
Rayleigh criterion [1], which limits the feature size of
interfering beams to half the wavelength of light. It is
interesting to inquire whether the quantum mechanical
absorption process underlying multiphoton phenomena
leads to ways around the diffraction limit of classical
optics. This focuses attention on the measurement process
itself, vis-à-vis the recording of a particular interference
pattern, such as in lithography, as the key to understanding
the interferometric properties of light.

Quantum entanglement between photons is recognized
to produce novel interference effects in correlation mea-
surements. The wave-particle duality of light is connected
with which-path knowledge as encapsulated in the quan-
tum eraser [2]. Specifically, path-number entanglement,
where photons in different paths (or polarizations) are
correlated in photon number, leads to subwavelength
fringes that can be useful for microscopy [3,4], lithography
[5,6], and magnetometry [7], and, when combined with
frequency correlations, leads to subnatural linewidths in
spectroscopy [8].

Our purpose is to inquire which, if any, of these remark-
able phenomena attributed to entangled photons can be
realized using classical light. We focus attention on quan-
tum field lithography [5,6]. Indeed, the difficulty of gen-
erating pure, high-order entangled Fock states, plus their
selective weak field detection, has recently spurred alter-
native efforts, such as the use of classical, coherent [9,10],
and thermal [11] light to emulate the quantum resolution.
In the coherent schemes, the requisite nonlinearity is ef-
fectively in the substrate (as in our case), and is accessed
through phase delays introduced in the interfering beams,
which has the effect of limiting the visibility and/or spatial
coherence of the recorded pattern. In the thermal scheme,
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the correlation of wave vectors is measured at two different
detection points, which limits the application to lithogra-
phy. We show below that with the proper multiphoton
detector we can overcome the above limitations, and
achieve arbitrary spatial patterning at subwavelength
scales using laser light.

Multiphoton phenomena, first discussed by Göppert-
Mayer in 1931 [12], have played a key role in both funda-
mental science and technology. The Hanbury-Brown–
Twiss effect in stellar interferometry [13], recognized to
be the harbinger of modern quantum optics, showed that
two-photon correlations, even of classical light, can have
new and interesting imaging properties that go beyond
single photon, or linear intensity, measurements. This
called for a reevaluation of optical coherence effects in
light of a quantum theory of photodetection.

As elucidated by Glauber [14], photodetection is a
space-time event corresponding to a pointlike, broadband
detector carrying out an absorptive measurement on the
field. The paradigm of an ideal photodetector is an atom
with a broad final density of states. In practice, however,
one usually needs to account for finite bandwidths in the
detection process. Mollow [15] considered the implica-
tions of a narrow band detector for the quantum field. He
showed that the counting rates for two-photon absorption
are different for chaotic and laser light depending on the
detector bandwidth. Significantly, considerations about the
atomic level structure and transition matrix elements now
become relevant. The effects of detector bandwidth have
also been studied for the case of polychromatic light [16],
with respect to the issues of photon flux counting and
photoelectric fluctuations.

In our approach to subwavelength interference (see
Fig. 1), the basic principle is a correlation of wave vector
and frequency such that a narrowband, multiphoton detec-
tor absorbs ‘‘bunches’’ of photons from different propa-
gation directions. As this is based purely on energy con-
straints, it can be formulated in the language of photo-
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FIG. 1. Subwavelength interference with classical light. Two
counterpropagating plane waves consisting of signal frequencies
�� interfere on a photosensitive substrate. The drive fields !�
assist a directional resonance for pairs of signal photons.
Sinusoidal N-photon interference can be obtained using a fre-
quency multiplet along each direction (c.f. Fig. 2).
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detection theory applied to finite bandwidths. The key
result is that the direction selectivity of the absorptive
measurement process literally simulates path-number cor-
relations between counterpropagating photons, a feature
that was previously associated with quantized light fields.

The motivation for this study comes from two points of
view. One is the early theoretical suggestion [17–19], and
experimental observation [20] of directional multiphoton
resonances, called ‘‘Dopplerons,’’ in saturated absorption
spectroscopy. Here, the Doppler shift of a moving atom in
an intense standing-wave field induces multiphoton reso-
nances at certain select velocities. This phenomenon was
later observed in the context of laser cooling. Another line
of work, initiated recently [21,22], showed that an atom (or
molecule) can be localized to subwavelength precision
based on the conditional detection of fluorescence photons
as the atom passes through a standing-wave field. These
works hint at the connection between directional interfer-
ence, absorption spectroscopy, and spatial localization.

We provide an illustrative calculation for the caseN � 2
shown in Fig. 1. This uses two signal frequencies and two
drive frequencies to complete three-photon resonance for
each direction. The general case of multiphoton (sinusoi-
dal) interference will be discussed later. While we focus on
a multilevel system, we note that Doppleron-type reso-
nances can also be observed in a two-level system, pro-
vided the one-photon detunings and field strengths
dominate the linewidths in a saturated absorption process
[23]. The theory of photoelectron counting has been de-
veloped in the semiclassical [24] and quantum field [25]
regimes. One begins by calculating a perturbative transi-
tion rate of the detector atoms interacting with the field.
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In the level scheme of Fig. 1, the intermediate levels cj
are off-resonant by detunings �1� � !c1b � �� and
�2� � !ac2

� ��. Assuming that the signal Rabi fre-
quency �S is the same for the two transitions, the interac-
tion Hamiltonian in the rotating wave approximation
(�S;�D � ��; !0) is given by

HI � @�S�jc1ihbje
i�1�t � jaihc2je

i�2�t � H:c:�

� @�D�jc1ihc2je
i��1���1��t � H:c:�: (1)

The Schrödinger equations for the state amplitudes are
next derived. For large one-photon detunings �j� �

�S;�D, the intermediate levels cj can be adiabatically
eliminated by setting the time derivatives of the slowly
varying amplitudes, ~cj � cj exp��i�j�t�, to zero. This
furnishes an effective coupling between levels a and b:

i _a�
�2
S

�2�
a � �

�2
S�D

�1��2�
b; (2)

and similarly with a$ b and 1$ 2. Apart from dispersive
phase shifts, the effective coupling is thus described by a
three-photon Rabi frequency, �eff � ��

2
S�D�=��1��2��.

In the usual perturbative regime, 1=�j� � t� 1=�eff ,
the rate of excitation from b to a is given to lowest order
by a third-order Fermi golden rule:

R�3� � 2�
��������

�2
S�D

�1��2�

��������
2
��!ab �!� � 2���: (3)

This gives the effective rate of two-photon absorption of
the signal field �� when assisted by the drive field !�.

The application to subwavelength interference proceeds
as follows. As the � channels realize distinct resonances,
the atoms will absorb two photons from one signal beam or
the other, but never one photon from each beam. As a
consequence, the spatial period of the fringes will carry
the two-photon wavelength, which is one-half the wave-
length of each photon, the same as achieved by a quantum,
entangled state of the form j2; 0i � j0; 2i.

Formally, in Fig. 1, we can write the net electric field as
seen by atoms parallel to the surface (x) as consisting of
two pairs of counterpropagating signal fields (of same
intensity) and the normally incident drive fields:

E�x;t��ES	ei�k�x���t��ei�k�x���t�


�ED	e�i!�t�e�i!�t
�c:c:; (4)

where k� � ����=c� cos�. Keeping the spatial depen-
dence in view, the third-order excitation rate of the atoms
takes the general form
R�3��x; t� /
d
dt

��������
Z t

0
dt3

Z t3

0
dt2

Z t2

0
dt1hajHI�x; t3�HI�x; t2�HI�x; t1�jbi

��������
2
; (5)

where the interaction Hamiltonian is given in Eq. (1), with �j�x; t� � 2djEj�x; t�=@ for each wave. Now, under conditions
of three-photon resonance, the leading contributions to the above integral will comprise exactly the two channels for the
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frequency-selective excitation shown in Fig. 1, whose rates
were calculated in Eq. (3). That is, the only two significant
terms in the field product will be those for which the same
beam, � or �, contributes twice:

R�3��x; t� /
d
dt

��������ei2k�xr�3�� �t� � ei2k�xr�3�� �t�
��������

2
; (6)

r�3�� �t� �
Z t

0
dt3

Z t3

0
dt2

Z t2

0
dt1	ESe

i�1�t1


� 	EDe�i��1���2��t2
	ESei�2�t3
; (7)

where the dipole moments have been suppressed. If the
one-photon detunings are large, �j� � �� � ��, then the
excitation amplitudes r��t� are approximately equal, and
the single beam, two-photon spatial frequencies 2k� make
up the interference pattern, i.e., the interbeam cross terms
exp	i�k� � k��x
 are absent because they are out of three-
photon resonance.

We can generalize this semiclassical scheme to many
photons. We invoke a multiphoton resonance as illustrated
in Fig. 2. Each of the two directions of propagation � is
now associated with N distinct frequencies. The signal
fields �n� are absorbed and a single drive field !0 is
emitted (which is common to both channels). The N signal
photons obey a sum frequency resonance:

XN
n�1

�n� � !ab � �N � 1�!0 � N�0; (8)

which ensures that, despite the multimode nature of each
beam, the N-photon wave vector, N�0=c � 2�=��0=N�, is
the same for both beams, providing effectively monochro-
matic spatial coherence to the fringe pattern. Furthermore,
we require that any interchange of photons between beams,
�n� $ �n0�, results in a loss of resonance, which identifies
the detector bandwidth as the fundamental unit of measure
for the frequency steps. For N-photon absorption of the
signal, the third-order rate of excitation in Eq. (3) general-
izes to (assuming equal detunings for the intermediate
levels)
ω

ω
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FIG. 2. Multiphoton resonance for two wave vectors k�. 2N �
1 photons resonantly excite the atom, with N photons coming
from the � (or �) beam. A single drive frequency !0 assists the
same resonance for both beams, provided the sum frequency of
the signal photons is fixed.
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R�2N�1� � 2�
��������

�N
S �N�1

D

�2N�2
�

��������
2
��!ab � �N � 1�!0 � N�0�:

The analysis proceeds similar to the N � 2 case, except
that the two-photon bichromatic wave vectors for the
beams in Eq. (6) are replaced by the N-photon monochro-
matic wave vectors �N��0=c� cos�.

Hence, two-beam semiclassical lithography exactly sim-
ulates quantum field lithography [5] with unlimited spa-
tial coherence. Moreover, the visibility is only limited by
the small difference in excitation amplitudes of the two
channels in Eq. (7). To achieve frequency-selective multi-
photon excitation, the criterion for choosing the frequency
separations of the 2N signal beams is governed by the
bandwidth, namely, that neighboring channels remain dis-
tinguishable in the presence of effects such as power broad-
ening and vibrational/collisional linewidths. This qualifies
the sense in which the substrate is a ‘‘narrow band’’ detec-
tor. However, since sharp (atomic type) resonances are not
required, we anticipate that this will be broadly applicable
to photoresists.

We now generalize the semiclassical scheme to mul-
tiple beams, i.e., diffraction, as shown in Fig. 3 for N � 2.
Each point on the slit plane is associated with two com-
plementary frequencies, �1k and �2k, that satisfy a sum
frequency resonance achieved through opposing spatial
chirps created using inverted prisms. Then, photon pairs
from a single spatial point on the slit plane will be ab-
sorbed collinearly (i.e., the same wave vector) in the
focal plane. This simulates the multimode state vector
j2; 0; . . . ; 0i �    � j0; . . . ; 0; 2i. As shown for quantum
field lithography [6], this would achieve subwavelength
ων
ν

FIG. 3. Subwavelength diffraction for classical light. Two laser
pulses are given opposite spatial chirps using inverted prisms,
and the resulting beams are combined by a beam splitter (BS) to
illuminate the slit plane with a position-dependent frequency
doublet, such that �1k � �2k � const. This creates a correlation
between wave vector and frequency pairs in the focal plane of
lens L3, and writes a two-photon pattern onto the Doppleron
substrate in both carrier and envelope.
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resolution not only in the carrier fringe (double-slit inter-
ference), but also in the envelope (single slit diffraction).
The ratio of the pulse bandwidth to detector bandwidth
determines the effective number of wave vectors constitut-
ing the diffraction pattern, or equivalently, the number of
discrete partitions of the slit apertures.

We note that the above semiclassical approach can be
adapted to imaging, for example, two lenses in an f-f-f-f
configuration. Here, one introduces a correlation between
wave vector and frequency in the focal plane of the first
lens after the light has passed through the object, i.e., once
the angular spectrum of the light is prescribed by the
diffracting apertures. This can be accomplished by using
a filter array in the focal plane that selects the desired spa-
tial chirp from a broadband input. Using a dual filter array,
one can associate a frequency pair (�1k; �2k) with each
wave vector such that the sum frequency is fixed: �1k �
�2k � const. The result is a subdiffraction image spot (airy
disk) created on the substrate in the image plane when
vignetting due to the lens apertures is taken into account.
As in the diffraction scheme, the bandwidth of the multi-
photon process effectively discretizes the angular spectrum
on the substrate, which in turn determines the resolution
needed for the filter array in this imaging scheme.

In practice, one could also use a Raman-type multi-
photon process where �1k is absorbed and �2k is emitted,
such that the difference frequency is constant. No drive
field would be required in this case, lowering the excitation
order. In general, Raman vibrational transitions have life-
times on the order of 1 ps, which generally increases as
temperature is decreased, where we note that liquid nitro-
gen temperatures are often used in semiconductor process-
ing. However, even at room temperature, vibrational
lifetimes as long as 0.5 ns [26] (300 MHz) have been
observed in organic films. Similarly narrow linewidths
have also been observed for Raman-excited spin transitions
in a solid at room temperature [27]. Finally, we note that
new resists have been developed for matter-wave lithogra-
phy with laser cooled alkali atoms [28]. These laser cooled
atoms generally exhibit ultranarrow optical and Raman
linewidths below 10 MHz. This narrow linewidth would
permit high-order Raman-based lithography.

In conclusion, we have shown how to achieve subwave-
length diffraction and imaging with classical light, with
high efficiency, visibility, and spatial coherence. We reit-
erate the basic point that a directionally selective, narrow
band detection process allows classical laser light to re-
semble a quantized entangled field exhibiting path-number
correlations, emphasizing the role of measurement in de-
fining the interferometric properties of light.
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