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Universal Optical Amplification without Nonlinearity
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3QuIC, Ecole Polytechnique, CP 165, Université Libre de Bruxelles, 1050 Bruxelles, Belgium
(Received 3 January 2006; published 27 April 2006)
0031-9007=
We propose and experimentally realize a new scheme for universal phase-insensitive optical amplifi-
cation. The presented scheme relies only on linear optics and homodyne detection, thus circumventing the
need for nonlinear interaction between a pump field and the signal field. The amplifier demonstrates near
optimal quantum noise limited performance for a wide range of amplification factors.
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Optical amplification is inevitably affected by funda-
mental quantum noise no matter whether it is phase sensi-
tive or phase insensitive as stressed by Louisell et al. [1]
and by Haus and Mullen [2]. The ultimate limits imposed
by quantum mechanics on amplifiers was later concisely
formulated by Caves [3] in fundamental theorems. This
intrinsic noise, intimately linked with measurement theory
and the no-cloning theorem, gives rise to many inextricable
restrictions on the manipulations of quantum states. For
example, microscopic quantum objects cannot be perfectly
transformed, through amplification, into macroscopic ob-
jects for detailed inspection [4]: for phase-insensitive am-
plification nonclassical features of quantum states, such as
squeezing or oscillations in phase space, will be gradually
washed out, and the signal-to-noise ratio of an information
carrying quantum state will be reduced during the course of
amplification. Despite these limitations, the universal
phase-insensitive amplifier is, however, rich of applica-
tions, in particular, in optical communication. Amplifiers
operating at the quantum noise limit are of particular
importance for quantum communication where informa-
tion is encoded in fragile quantum states, thus extremely
vulnerable to noise.

Numerous apparatuses accomplish, in principle, ideal
phase-insensitive amplification as, for instance, solid state
laser amplifiers [5], parametric down-converters [6], and
schemes based on four wave mixing processes [7].
However, to date phase-insensitive amplification at the
quantum limit has been only partially demonstrated [8,9]:
a number of difficulties are indeed involved in practice,
especially for low gain applications. These difficulties
mainly lie in the fact that the amplified field has to be
efficiently coupled, mediated by a nonlinearity, to a pump
field.

Following a recent trend in quantum information sci-
ence, where nonlinear media are efficiently replaced by
linear optics [10], we show in this Letter that universal
phase-insensitive amplification can also be achieved using
only linear optics and homodyne detection. The simplicity
and the robustness of this original scheme enable us to
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achieve near quantum noise limited amplification of co-
herent states, even in the low gain regime.

Let us first briefly summarize the basic formalism de-
scribing a phase-insensitive amplifier [3]. Because of the
symmetry of such an amplifier, it can be described by the
following input-output transformation: âout �

����
G
p

âin � N̂,
where âin�out� represent the input (output) annihilation bo-
sonic operators, G is the power gain, and N̂ the operator
associated with noise addition. Even for an ideal amplifier,
this noise term must be added to ensure the preservation of
the commutation relations �âi; â

y
i � � 1, and must satisfy

�N̂; N̂y� � �1�G�. Thus it can be divided in two parts: a
fundamental quantum part given by N̂q �

�������������
G� 1
p

âyint,
where âint is associated with the unavoidable fluctuations
of the internal bosonic mode, and a scalar classical part
denotedNcl. Therefore, a phase-insensitive amplifier work-
ing at the quantum noise limit (i.e., Ncl � 0) obeys the
relation [3]:

â out �
����
G
p

âin �
�������������
G� 1
p

âyint: (1)

The intrinsic quantum noise, described by âint, can be
traced back to different physical processes. For instance,
spontaneous emission is unavoidably introduced in laser
amplification, whereas, in parametric amplifiers and four
wave mixers, vacuum fluctuations of the idler mode are
added to the output signal [5–7]. In Raman amplifiers and
Brillouin amplifiers zero-point fluctuations of, respec-
tively, lattice vibrational modes (optical phonon) and
acoustic phonon modes cause the noise [1].

The efficiency of a phase-insensitive amplifier is typi-
cally quantified by the noise figure [3,9], which is defined
by NF � SNRout=SNRin. Here SNRin�out� is the signal-to-
noise ratio of the input (output) field. For coherent state
amplification, the noise figure then reads

NF �
G

2G� 1��2Ncl

(2)

which is maximized for quantum noise limit operation
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corresponding to �2Ncl � 0. However, provided that the
spurious technical noise Ncl is constant or has only a weak
dependence on G, the noise figure still approaches the
quantum limit of 3 dB in the high gain regime. The
situation is different at low gains, as technical noise or
internal losses become devastating for quantum noise lim-
ited performance [8,9]. To date, these effects have hitherto
prevented the full demonstration of quantum noise limited
phase-insensitive amplification in the low gain regime
[11], which is the domain of interest in the context of
quantum information science.

For sake of completeness we mention that another class
of amplifiers characterized by phase sensitive operation
allows for noiseless amplification, provided the analysis
is restricted to just one quadrature [3,9]. Such an amplifier
is described by the relation: âout � �1�G�=

�������
4G
p

âin �

�1�G�=
�������
4G
p

âyin and the noise figure is NF � 1.
We now show that the amplifier transformation [Eq. (1)]

can be realized using only linear optics, homodyne detec-
tion, and feedforward, rendering the complex coupling
between a strong pump and the signal inside a nonlinear
crystal superfluous. Our scheme is illustrated schemati-
cally inside the dashed box in Fig. 1, and runs as follows.
The input signal, represented by âin, is impinging on a
beam splitter with transmission T and reflectivity R, and
hence transformed into â0in �

����
T
p

âin �
����
R
p

v̂1 where the
annihilation operator v̂1 represents the vacuum mode en-
tering the dark port of the beam splitter. Conjugate quad-
rature amplitudes, e.g., the amplitude x̂ � â� ây and the
phase quadrature p̂ � �i�â� ây�, are simultaneously
measured on the reflected part by dividing it on a 50=50
beam splitter and subsequently performing homodyne
measurements on the two output beams. The measured
quadratures are

x̂ m �
1���
2
p �

����
R
p

x̂in �
����
T
p

x̂v1 � x̂v2� (3)

p̂ m �
1���
2
p �

����
R
p

p̂in �
����
T
p

p̂v1 � p̂v2�: (4)
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FIG. 1 (color online). Conceptual diagram of the amplifier
setup. The gain is determined by the transmission of the equiva-
lent beam splitter (BS) [realized here by a combination of a half
wave plate and a polarizing beam splitter (PBS)]. AM and PM
are amplitude and phase modulators, respectively. Also shown
are the phase space diagrams of the input coherent state and the
amplified output state.
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Here x̂v�1;2� and p̂v�1;2� denote the quadratures of the un-
correlated vacuum modes entering at the two beam split-
ters. These projective measurements (with outcomes
represented by their eigenstates and corresponding eigen-
values xm and pm) are then used to control a unitary
displacement operation on the remaining system [12].
The feedforward loop can be described without any mea-
surement by considering the unitary operator, D̂ �
exp�gx̂m�âs � â

y
s �� exp�igp̂m�âs � â

y
s ��, where g is the

electronic gain and then subsequently tracing out the
‘‘measured’’ system. This results in the following trans-
formation: â0s ! D̂yâ0sD̂ � â0s � g�x̂m � ip̂m�=2, and by
choosing an electronic gain of g �

������������
2R=T

p
we arrive at

â out �

����
1

T

s
âin �

�������������
1

T
� 1

s
v̂y2 : (5)

Setting G � 1
T , we exactly recover the transformation for

an ideal phase-insensitive amplifier given by (1), where the
amplification factor is controlled by the beam splitting
ratio. Note that the noise that enters from the vacuum
fluctuations on �1 is automatically cancelled out in the
output via the feedforward. We also note that a related
scheme, where noise entering a beam splitter was cancelled
via feedforward, was used in Ref. [13] to build a noiseless
amplifier (with NF � 1 for the amplitude quadrature).
However, in contrast to our proposal, this scheme, apart
from being phase sensitive, was not fully operating at the
fundamental quantum limit [3]. A truly quantum noise
limited phase sensitive amplifier based on the same prin-
ciples was recently proposed [14], but it requires a non-
classical resource, namely, a squeezed vacuum state.

Interestingly, the fundamental amplifier noise, repre-
sented by �̂2, arises from the vacuum fluctuations that enter
through the dark port of the 50=50 beam splitter used for x̂
and p̂ quadrature measurements. The amplifier noise is
therefore directly related to the noise penalty associated
with simultaneous measurement of conjugate quadratures.
The close link between amplification and measurement
theory [3] is thus particularly emphasized by our scheme.

The amplifier proposed in this Letter is phase insensi-
tive, and, in principle, amplifies any input state at the
quantum limit. In the following, we demonstrate experi-
mentally the amplification of a particular quantum state,
namely, the coherent state. The experimental setup is
shown in Fig. 1. The laser source was a monolithic con-
tinuous wave Nd:YAG laser at 1064 nm. A small part of
the laser beam was tapped off to serve as an input signal to
the amplifier and the rest was used as local oscillator
beams. Since the output from a laser is not a perfect
coherent state due to low frequency technical noise, we
define our coherent state to reside at a certain sideband
frequency which we chose to be 14.3 MHz, within a
bandwidth of 100 kHz. At this frequency the laser was
found to be shot noise limited, and by applying modula-
tions at 14.3 MHz (by independently controlling an ampli-
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FIG. 2. Power spectra showing the operation of the amplifier
for conjugate quadratures. The beam splitter was set to 1:2
enabling an optical gain of G � 1:5�1:8 dB�. The mean value
of the field is amplified by 1.8 dB and the noise is consequently
increased by 3.2 dB, which is very close to the ideal noise level
of 3 dB above the shot noise. The noise figure is NF � 0:7. The
resolution bandwidth is 10 kHz and the video bandwidth is
30 Hz.

1.5 2 2.5 3 3.5
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FIG. 3. The noise figure, NF, as a function of the gain, G. The
black ( gray) dots represent the experimental data for the
amplitude (phase) quadrature. The solid line represents the
quantum noise limit [given by Eq. (2)], whereas the predicted
noise figure for our device with imperfect detectors is shown by
the dashed line. For comparison, the dotted line corresponds to
an amplifier with two vacuum units of extra technical noise.
Errors mainly stem from the inaccuracy in determining the
quantum efficiency of the photodiodes.
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tude and a phase modulator), the sidebands are excited and
thus serve as a perfect coherent state.

The coherent state is then directed to the amplifier where
it is divided by a beam splitter; the reflected part is mea-
sured and the transmitted part is displaced according to the
measurement outcomes. Simultaneous measurements of
the amplitude and phase quadrature are performed by
combining the reflected signal beam with an auxiliary
beam, �2, with a �=2 phase shift, and balanced intensities.
The sum and difference of the photocurrents generated by
two high quantum efficiency photodiodes then provide the
simultaneous measurement of amplitude and phase quad-
rature (this strategy is not shown explicitly in the figure).
The outcomes are sent to electronic amplifiers with appro-
priate gains and then finally fed into independent modu-
lators. The modulators are placed in an auxiliary beam
which is coupled to the signal beam via an asymmetric
beam splitter which transmits 99% of the signal and re-
flects 1% of the auxiliary beam, thus leading to a negligible
small noise addition. After displacement, the amplified
signal is directed into a homodyne measurement system
for verification.

The performance of the system is characterized by mea-
suring the spectral noise properties of the signal before and
after amplification. Since the quadrature statistics of the
involved fields are Gaussian, measurements of the first
[hx̂�p̂�outi] and second moments [�2x̂�p̂�out] of two con-
jugate observables, such as the amplitude and phase quad-
rature, suffice to fully characterize the states. Both
quadratures are measured at the sideband frequency using
standard homodyne detection techniques. To ensure con-
sistent comparison between the input and output signal,
these measurements are realized by the same homodyne
detector.

An example of a specific amplifier run is shown in Fig. 2.
Here we set the beam splitting ratio to 1:2 in order to reach
an optical gain of 1.5. The spectral densities of the ampli-
tude and phase are shown over a 100 kHz frequency span
for the input signal and the amplified output signal.
Considering the whole span as a part of the quantum state,
the heights of the peaks correspond to the coherent mean
values whereas the noise floor can be regarded as the actual
noise in the state. Therefore, the amplification factor,
which is roughly the difference between the input and
output peaks, as well as the added noise, which is the
difference between the shot noise limit and the noise floor,
can be easily estimated. It is evident from the plots that
additional noise has been added to the signal as a result of
the amplification process.

To evaluate the noise figure, we estimated accurately the
gain and the added noise at 14.3 MHz. This was realized in
a zero span measurement over 2 seconds by subsequently
switching on and off the modulation. Moreover, to avoid
erroneously underestimation of the noise power, all the
measurement have been corrected for losses occurring in
the homodyne detection. The total efficiency, including
16360
mode matching and photodiode quantum efficiency, has
been carefully estimated to �hd � 0:83.

In Fig. 3, we report the noise figure of our amplifier for a
whole range of gains (corresponding to different trans-
mission coefficients and optimized electronic gains). By
comparing the experimental results with the ideal ones
[calculated from Eq. (2) and indicated by the solid line],
we clearly see that the amplifier operates close to the
fundamental limit even for low amplification factors. The
small deviation to the ideal amplifier performance is due to
imperfections in the in-line homodyne detector and feed-
forward electronics. These limiting factors were partly
overcome by paying special attention to the construction
and alignment of the system. The efficiency of the homo-
dyne detector amounted to 93% (95% photodiode effi-
ciency and 99% mode overlap efficiency) and the
electronic noise of the detectors was overcome by using
2-3
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FIG. 4 (color online). Proposed scheme for a phase conjugat-
ing amplifier with the nonlinearity put off-line. The displace-
ments, indicated by D, can be performed as shown in Fig. 1.
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newly designed ultrasensitive detectors. Taking these im-
perfections into account, the theoretically expected noise
figure is given by NF � �G=�2G� 2� �� where � is the
overall efficiency of the detector system. This expression,
which tends to the limit NFl � 0:46��3:3 dB� for high
gains, is shown in Fig. 3 by the dashed line: it is in good
agreement with the experimental results, demonstrating
that basically no additional technical noise is invading
the amplifying process.

The challenge of realizing such a quantum noise limited
amplifier in the low gain regime is highlighted by consid-
ering the behavior of an amplifier that exhibits only two
vacuum units of extra technical noise [�2Ncl � 2 in
Eq. (2)]. As mentioned earlier and clearly illustrated by
in Fig. 3, even such a small amount of background noise,
which is quite common for amplifiers, leads to a strong
deviation from the quantum noise limit at low gains.

To complete the investigation of the system, we finally
focus here on the existence of the phase conjugate ampli-
fied output state. This state, mirrored about the amplitude
quadrature axis in phase space with respect to the input
state, must be present in all amplifiers to ensure unitarity
[3]. In down-converters, this mode is the idler output and
thus easily accessible for further processing. However, it is
not always directly accessible: e.g., in a laser amplifier this
mode is scattered into vibrational modes of the atoms. But
where is the phase conjugate output in our scheme? It turns
out that it can be extracted by the introduction of an
entangled ancilla, as shown in Fig. 4. The amplifier settings
are not changed [so Eq. (1) still holds], but now, in addi-
tion, one half of the entangled ancilla is injected into the
empty port of the variable beam splitter and the other half
is displaced according to the classical measurement out-
comes. The amplification noise is not affected by this since
the noise due of the entangled ancilla is canceled out, as
mentioned earlier. The electronic gains of the classical
currents before displacement are �x �

���������
2=T

p
and �p �

�
���������
2=T

p
for the amplitude and phase quadrature, respec-

tively. For perfect entanglement in the ancilla we find the
following input-output relation for the additional output
mode:
16360
â ph �

����
R
T

s
âyin �

����
1

T

s
v̂2: (6)

Equations (5) and (6) mimic the ones of a down-converter
and allow us to interpret âin and âout as being the input and
output signal modes and v̂2 and âph as being the input and
output idler modes.

In conclusion, we have proposed and experimentally
demonstrated that a phase-insensitive amplifier can be
constructed from simple linear optical components, homo-
dyne detectors, and feedforward. Quantum noise limited
performance was exhibited, in particular, at low gains, only
limited by inefficiencies of the in-line detection process.
The fact that our amplifier exhibits nearly quantum noise
limited performance at low gains suggests that it can be
used to amplify nonclassical states (such as squeezed states
and Schrödinger cat states) and still maintain some of their
nonclassical features such as squeezing and interference in
phase space. Furthermore, we believe that such an ampli-
fier can find usage in the field of quantum communication,
where optimal amplification of information carrying quan-
tum states is needed partly to compensate for downstream
losses of a quantum channel and partly to enable an arbi-
trary quantum cloning function [15]. One particular clon-
ing transformation of a coherent state was recently
demonstrated with a fixed gain amplifier [16].
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