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We report the result of our ab initio calculation of the 6s2S1=2 ! 5d2D3=2 parity nonconserving electric
dipole transition amplitude in 137Ba� based on relativistic coupled-cluster theory. Considering single,
double, and partial triple excitations, we have achieved an accuracy of less than 1%. If the accuracy of our
calculation can be matched by the proposed parity nonconservation experiment in Ba� for the above
transition, then the combination of the two results would provide an independent nonaccelerator test of the
standard model of particle physics.
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Parity nonconservation (PNC) in atoms arising from
neutral weak currents has the potential to test the standard
model (SM) of particle physics [1,2]. By combining the
results of high precision measurements and calculations of
atomic PNC observables, it is possible to extract the nu-
clear weak charge [2] and compare with its corresponding
value in the SM. A discrepancy between these two values
could reveal the possible existence of new physics beyond
the SM. The most accurate data on atomic PNC currently
comes from the 6s2S1=2 ! 7s2S1=2 transition in cesium
(Cs), where the claimed experimental [3] and theoretical
[4] accuracies are 0.35% and 0.5%, respectively, and the
deviation from the SM is about 1� [4]. It would indeed be
desirable to consider other candidates which could yield
accurate values of the nuclear weak charge. In this context
an experiment to observe PNC in the 6s2S1=2 ! 5d2D3=2

transition in Ba� using the techniques of ion trapping and
laser cooling proposed by Fortson is of special importance
[5,6].

This Letter is concerned with a high precision calcula-
tion of the amplitude of the above mentioned parity non-
conserving electric dipole (E1PNC) transition in Ba� using
relativistic coupled-cluster (RCC) theory, which is equiva-
lent to all order relativistic many-body perturbation theory
[7]. It is the first application of this theory to atomic PNC.
Blundell et al. had used this theory in the linear approxi-
mation to calculate E1PNC for the 6s2S1=2 ! 7s2S1=2 tran-
sition in Cs [8]. Dzuba et al. [9] and Geetha [10] have
calculated this PNC amplitude for the 6s2S1=2 ! 5d2D3=2

transition in Ba� as discussed later.
The parity nonconserving nuclear spin independent

(NSI) interaction arises from the nucleon-electron neutral
weak interaction and its Hamiltonian is given by

HNSI
PNC �

GF

2
���
2
p Qw�5�N�r�; (1)

where GF is the Fermi constant, Qw is the nuclear weak
charge which is equal to ��2Z�N�c1u��2N�Z�c1d� with
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c1u and c1d representing electron-up-quark and electron-
down-quark coupling constants, respectively, �N�r� is the
nuclear density function, and �5�� i�0�1�2�3�, which is a
pseudoscalar, is the product of the four Dirac matrices.
HNSI

PNC is responsible for mixing atomic states of opposite
parities but with the same angular momentum. Its strength
is sufficiently weak for it to be considered as a first-order
perturbation. It is therefore possible to write the nth state
atomic wave function as

j�ni � j�
�0�
n i �GFj�

�1�
n i: (2)

In RCC, the atomic wave function j��0�v i for a single
valence (v) open-shell system is given by [7,11]

j��0�v i � eT
�0�
f1� S�0�v gj�vi; (3)

where we define j�vi � ayvj�0i, with j�0i as the Dirac-
Fock (DF) state for closed-shell system.

In the singles and doubles approximation we have

T�0� � T�0�1 � T
�0�
2 ; S�0�v � S�0�1v � S

�0�
2v; (4)

where T�0�1 and T�0�2 are the single and double particle-hole
excitation operators for core electrons and S�0�1v and S�0�2v are
the single and double excitation operators for the valence
electron, respectively. The amplitudes corresponding to
these operators can be determined by solving the relativ-
istic coupled-cluster singles and doubles equations. The
most important triple excitations have been considered by
constructing the amplitudes [12,13]

Spqr�0�vbc �
VesT̂

�0�
2 � VesŜ

�0�
v2

�v � �b � �c � �p � �q � �r
; (5)

where �’s are the orbital energies. The above amplitudes
are added to the open-shell coupled-cluster singles and
doubles cluster amplitude equations and they are solved
self-consistently. The underlying reason for adding the
triples amplitudes to the open-shell and not closed-shell
amplitudes equation is that the major contributions to the
3-1 © 2006 The American Physical Society
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properties of single valence systems come from the open-
shell singles and doubles amplitudes; the contributions of
the closed-shell amplitudes being rather small.

Using Eq. (2), the explicit form of E1PNC, is given by

E1PNC �
h�fjDj�ii�����������������������������������
h�fj�fih�ij�ii

q

�
h��0�f jDj�

�1�
i i � h�

�1�
f jDj�

�0�
i i���������������������������������������������

h��0�f j�
�0�
f ih�

�0�
i j�

�0�
i i

q ; (6)

where D is the electric dipole (E1) operator, i and f sub-
scripts are used for initial and final valence electrons,
respectively. Using the explicit expression for the first-
order perturbed wave function, we get

E1PNC �
X
I�i

h��0�f jDj�
�0�
I ih�

�0�
I jH

NSI
PNCj�

�0�
i i

Ei � EI

�
X
I�f

h��0�f jH
NSI
PNCj�

�0�
I ih�

�0�
I jDj�

�0�
i i

Ef � EI
; (7)

where I represent intermediate states.
It is obvious from the above equation that the accuracy

of the calculation of E1PNC depends on the excitation
energies of the different intermediate states, the matrix
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elements of HNSI
PNC and D. Blundell et al. have used the

above equation to determine E1PNC for the 6s2S1=2 !

7s2S1=2 transition in Cs by considering the most important
intermediate states [8]. The drawback of this approach is
that the summation can be performed only over a finite set
of intermediate states which limits the accuracy of the
calculation. The method we have used in the present
work circumvents this problem by solving the first-order
perturbed equation

�H�0� � E�0��j��1�v i � �E�1� �HNSI
PNC�j�

�0�
v i; (8)

where E�1� vanishes for the first-order correction.
The perturbed cluster operators can be written as

T � T�0� �GFT
�1�; Sv � S�0�v �GFS

�1�
v ; (9)

where T�1� and S�1�v are the first-order GF corrections to the
cluster operators T�0� and S�0�, respectively. The amplitudes
of these operators are solved, keeping up to linear in PNC
perturbed amplitudes, by the following equations

h�p
a j �H�0�N T

�1� � �HNSI
PNCj�0i � 0;

h�pq
ab j

�H�0�N T
�1� � �HNSI

PNCj�0i � 0;
(10)

and
h�p
vj �H�0�N S

�1�
v � � �H�0�N T

�1� � �HNSI
PNC�f1� S

�0�
v gj�vi � �h�

p
vjS
�1�
v j�viIP;

h�pq
vbj

�H�0�N S
�1�
v � � �H�0�N T

�1� � �HNSI
PNC�f1� S

�0�
v gj�vi � �h�

pq
vbjS

�1�
v j�viIP;

(11)

where H�0� is the Dirac-Coulomb (DC) Hamiltonian and �H is defined as e�T
�0�
HeT

�0�
, which is computed after determining

T�0�, IP is the ionization potential energy corresponding to the valence electron ‘‘v’’, and the subscript N denotes normal
form of an operator. We have used a; b . . . and p; q . . . etc. to represent holes and particles, respectively. j�p

vi and j�pq
vbi are

the single and double excited states, respectively, with respect to j�vi. Using Eqs. (3), (6), and (9) and only keeping terms
linear in GF, the expression for E1PNC can be written as

E1PNC�
h�fjf1�S

�1�y

f �T�1�
y
S�0�

y

f �T�1�
y
geT

�0�y

DeT
�0�
f1�T�1��T�1�S�0�i �S

�1�
i gj�ii���������������������������������������

�1�N�0�f ��1�N
�0�
i �

q

�
h�fjS

�1�y

f
�D�0��1�S�0�i ���1�S

�0�y

f �
�D�0�S�1�i �S

�0�y

f �T
�1�y �D�0� � �D�0�T�1��S�0�i ��T

�1�y �D�0�� �D�0�T�1��S�0�i j�ii���������������������������������������
�1�N�0�f ��1�N

�0�
i �

q : (12)
In the above expression we define �D�0� � eT
�0�y

DeT
�0�

and
N�0�v � h�vjS

�0�y
v eT

�0�y

eT
�0�
S�0�v j�vi for the valence electron

v and each term is connected. The above matrix element is
evaluated by a method similar to that used in our earlier
works of Ba� [14,15].

The orbitals are constructed as linear combinations of
Gaussian type orbitals (GTOs) of the form [16]

Fi;k�r� � rke��ir
2
; (13)

where k � 0; 1; . . . for s; p; . . . type orbital symmetries,
respectively. For the exponents, we have used

�i � �0�
i�1: (14)
We have considered 30s1=2, 25p1=2, 25p3=2, 25d3=2,
25d5=2, 20f5=2, 20f7=2, 20g7=2, and 20g9=2 GTOs for the
DF calculation and all occupied (active holes) orbitals in
the RCC calculations. We have chosen �0 as 0.00525 and
� as 2.73 for all the symmetries. All orbitals are generated
on a grid using a two-parameter Fermi nuclear distribution
approximation given by

� �
�0

1� e�r�c�=a
; (15)

where �0 is the average nuclear density, ‘‘c’’ is the half-
charge radius, and ‘‘a’’ is related to the skin thickness.
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TABLE I. Excitation energy (cm�1), E1 transition amplitudes
(a.u.) and magnetic dipole hyperfine structure constant (MHz)
for different low-lying states of Ba�.

Initial state 6s2S1=2 6s2S1=2 5d2D3=2 5d2D3=2

! Final state 6p2P1=2 6p2P3=2 6p2P1=2 6p2P3=2

Excitation energy 20 410 22 104 15 097 16 795
Experiment [18] 20 262 21 952 15 388 17 079
E1 transition amplitude 3.37 4.72 3.08 1.36
Experiment [19] 3.36(0.16) 4.67(0.08) 3.03(0.08) 1.36(0.04)
Atomic state 6s2S1=2 6p2P1=2 6p2P3=2 5d2D3=2

Hyperfine constant (A) 4078.18 740.77 128.27 189.92
Experiment [20–22] 4018.871(2) 743.7(3) 127.2(2) 189.7288(6)

TABLE III. Contributions to the E1PNC calculation in
�10�11iea0��QW=N� using RCC calculation.

Initial perturbation 6s2S�1�1=2 ! Final pert. 6s2S�0�1=2 !

Terms 5d2D�0�3=2 Terms 5d2D�1�3=2
Dirac-Fock contribution
DHNSI

PNC 2.018 HNSI
PNCD �0:3� 10�5

DT�1�1 0.0003 T�1�
y

D 0.418
�D�0�S�1�1i 2.634 S�1�y1f

�D�0� �0:179

�D�0�S�1�2i �0:242 S�1�y2f
�D�0� �0:166

S�0�y1f
�D�0�S�1�1i 0.149 S�1�y1f

�D�0�S�0�1i 0.003

S�0�y1f
�D�0�S�1�2i 0.007 S�1�y1f

�D�0�S�0�2i 0.008

S�0�y2f
�D�0�S�1�1i �0:116 S�1�y2f

�D�0�S�0�1i �0:009

S�0�y2f
�D�0�S�1�2i �0:001 S�1�y2f

�D�0�S�0�2i 0.001
Others �0:011 0.012
Norm. �0:046 �0:001
Total 2.375 0.087
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These values are considered using the relations given by
Parpia and Mohanty [17].

Our earlier calculations of excitation energies [13], E1
transition amplitudes [14], and magnetic dipole hyperfine
constants [15] for some of the low-lying states in Ba�

based on RCC theory suggest that it is in principle possible
to perform a calculation of E1PNC for the 6s2S1=2 !

5d2D3=2 transition in that ion to an accuracy of better
than 1%. We have recalculated these quantities using the
same method but with a larger basis and the results are
given in Table I. The agreement with experiment of the
most important excitation energy (6p2P1=2) for the calcu-
lation of E1PNC is less than 1%. This is also the case for the
hyperfine constants of three of the states—6p2P1=2,
6p2P3=2 and 5d2D3=2, while for the 6s2S1=2 state, the
agreement is a little over 1%. All the transition amplitudes
are within the experimental error bars. The result of our
calculation of the electric quadrupole (E2) amplitude for
the 6s2S1=2 ! 5d2D3=2 transition is 12.61 in a.u. It is in
agreement with our earlier calculation [14] and well within
the experimental bounds [23]. In Table II, we present the
values of the square root of the product of the hyperfine
constants. The accuracies of these two quantities give an
indication of the accuracies of the PNC matrix elements
between 6s2S1=2 and 6p2P1=2 states as well as 6p2P3=2 and
5d2D3=2 states. Both of them are in excellent agreement
with experiment, suggesting that the two leading PNC
matrix elements used in the E1PNC calculation are very
accurate. The contributions from the different terms in
E1PNC are presented in Table III. It is clear that the largest
contribution comes from DS�1�1 [Fig. 1(iii)] which repre-
sents the DF term and a certain subclass of core polariza-
tion as well as pair correlation effects [10]. This is due to
the relatively large (6s1=2 � 6p1=2) S�1�1 cluster amplitude.
TABLE II. Square root of the magnetic dipole hyperfine con-
stants (MHz) and their deviations from experimental results.

Experiment This work Deviation (%)������������������������������
A6s2S1=2

A6p2P1=2

q
1728.83 1738.1 0.5�������������������������������

A6p2P3=2
A5d2D3=2

q
155.35 156.08 0.5
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Two different types of core polarization effects; DT�1�1

[Fig. 1(i)] and DS�1�2 as well as its conjugate [Fig. 1(v)
and (vi)] also make significant contributions. The former is
mediated by the neutral weak interaction and involves the
6s valence and core electrons. Correlation effects corre-
sponding to S�0�y1 DS�1�1 and S�0�y2 DS�1�1 are non-negligible,
but their signs are opposite. Contributions from other terms
are comparatively small.

The result of E1PNC for the 6s2S1=2 ! 5d2D3=2 transi-
tion in our calculation is 2:46� 10�11iea0��QW=N�. It is
larger in magnitude than those obtained by Dzuba et al. [9]
and Geetha [10] as shown by Table IV. The former work is
based on a variant of all order many-body perturbation
theory, but it has some semiempirical features. It is carried
out by using two different approaches. One of them is
similar to the sum-over-states approach by Blundell et al.
[8] and the other is known as the mixed approach where the
PNC interaction explicitly mixes states of opposite parities.
However, both calculations do not include contributions
from certain correlation effects; i.e., structural radiation,
weak correlation potential, and normalization of states [9]
that are included in our calculation. Their 6p2P1=2 !

5d2D3=2 E1 matrix element, which is important for the
above mentioned PNC transition amplitude is not as accu-
rate as ours. Furthermore, the accuracies of their PNC
matrix elements are not known as they have not performed
calculations of the hyperfine constants of the relevant
states. The reason for the discrepancy between our calcu-
TABLE IV. Comparison of E1PNC results from different cal-
culations in �10�11iea0��QW=N�.

Dzuba et al. [9] Geetha [10] Present work
(mixed parity) (sum-over-states)

2.17 2.34 2.35 2:46	 0:02
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FIG. 1. Important Goldstone diagrams corresponding PNC
amplitudes.
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lation and Geetha’s is that our approach implicitly includes
several intermediate states; particularly doubly excited
opposite parity states which her sum-over-states approach
omits.

The error accrued in our calculation of E1PNC can be
determined from the errors in the excitation energies, E1
transition amplitudes and hyperfine constants (see Table I).
We have not estimated the errors in the calculated values of
these quantities by comparing with measurements, since
the error bars in the E1 transition amplitudes are rather
large. Instead, we have taken the differences of our RCC
calculations with single, double, and leading triple excita-
tions and just single and double excitations as the errors.
The error in E1PNC (0.02) has been obtained by adding the
errors for the different quantities it depends on in quad-
rature for the leading intermediate states 6p2P1=2 and
6p2P3=2 and using a scale factor to estimate the errors
from other intermediate states that together make a small
contribution.

The contribution of the Breit interaction to E1PNC at
the DF level is 0.1% and the nuclear structure contribution
is 0.3%. The latter has been determined more accurately
than Blundell et al. [8] using relativistic mean field
theory. Our calculation of Cs E1PNC is �0:902�4� �
10�11iea0��QW=N� using our present method has an ac-
curacy of about 0.5% and this is a strong indication that our
RCC method is capable of high precision PNC calculations
for single valence systems.

In conclusion, we have performed a sub 1% calculation
of E1PNC for the 6s2S1=2 ! 5d2D3=2 transition in Ba�

using RCC. We have included single, double, as well as a
leading class of triple excitations and highlighted the im-
portance of various many-body effects. Given the promise
that the Ba� PNC experiment holds out, it does indeed
appear that in the future the result of that experiment
combined with our calculation would constitute a new
and an important probe of physics beyond the SM.
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