
PRL 96, 161601 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
28 APRIL 2006
Moduli Space of Non-Abelian Vortices
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We completely determine the moduli space MN;k of k vortices in U�N� gauge theory with N Higgs
fields in the fundamental representation. Its open subset for separated vortices is found as the symmetric
product �C� CPN�1�k=Sk. Orbifold singularities of this space correspond to coincident vortices and are
resolved resulting in a smooth moduli manifold. The relation to Kähler quotient construction is discussed.
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Introduction.—Vortices are very important solitons in
various areas of physics [1]: high energy physics, cosmol-
ogy, condensed matter physics, and nuclear physics.
Vortices in Abelian gauge theory have been well studied
so far [2–4]. Recently, vortices in non-Abelian gauge
theory (called non-Abelian vortices) have attracted much
attention [5–7] because a monopole is confined in the
Higgs phase with non-Abelian vortices attached as a dual
picture of quark confinement [8] (see also [9,10] for related
models). It is very important to determine the moduli space
of vortices. It describes the vortex scattering in d � 2� 1
[4], is used for the reconnection of vortex (cosmic) strings
in d � 3� 1 [11,12], and is needed for the vortex counting
in d � 1� 1, similarly to the instanton counting. Identi-
fying vortices with certain D branes in a D-brane configu-
ration in string theory, the Kähler quotient construction of
the moduli space of non-Abelian vortices was suggested
[5]. We have determined the moduli space of domain walls
[13] and other solitons [14] by introducing the method of
the moduli matrix. In this Letter we completely determine
the moduli space of non-Abelian vortices by applying this
method.

Vortex equations and their solutions.—We consider vor-
tex solutions in d � 3; 4; 5; 6. Field contents are a gauge
field WM (M � 0; 1; . . . ; d� 1), two N � N matrices H1

and H2 of Higgs fields and adjoint scalars �I (I �
1; . . . ; 6� d). The Lagrangian in d � 6 is

L 6�Tr
�
�

1

2g2FMNF
MN�DMHi�DMHi�y

�
�V; (1)

with V � g2

4 Tr��H1H1y � H2H2y � c1NC
�2 �

4H2H1yH1H2y�, where the triplet of Fayet-Iliopoulos
parameters is chosen to the third direction (0; 0; c > 0).
This Lagrangian enjoys U�N� gauge symmetry as well
as SU�N� flavor symmetry. By adding fermions this
Lagrangian becomes supersymmetric with eight super-
charges. The Lagrangian in d � 3; 4; 5 is obtained by
trivial dimensional reductions, in which the adjoint scalars
�I appear from higher dimensional components of the
gauge field. The scalars �I trivially vanish in vortex solu-
tions and we do not need them. In either dimension, the
vacuum is the so-called color-flavor locking phase, H1 ����
c
p

1N and H2 � 0 where the symmetry of the Lagrangian
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is broken to SU�N�G�F. This symmetry will be further
broken in the presence of vortices and therefore acts as
an isometry on the moduli space.

In the following we simply setH2 � 0 andH 	 H1. The
Bogomolnyi completion leads to the vortex equations

0�D1H� iD2H; 0�F12�
g2

2
�c1N�HHy�; (2)

for vortices in the x1-x2 plane and their tension

T � �c
Z
d2xTrF12 � 2�ck; (3)

with k�2 Z
0� measuring the winding number of the U�1�
part of the broken U�N� gauge symmetry.

Defining a complex coordinate z 	 x1 � ix2, the first
vortex Eq. (2) can be solved as

H � S�1H0�z�; W1 � iW2 � �i2S
�1 �@zS; (4)

with S � S�z; �z� 2 GL�N;C� defined by the second
Eq. (4), and H0�z� an arbitrary N by N matrix holomorphic
with respect to z, which we call the moduli matrix. With a
gauge invariant quantity � 	 SSy the second vortex
Eq. (2) can be rewritten as

@z��
�1 �@z�� �

g2

4
�c1N ���1H0H

y
0 �: (5)

We call this the master equation for vortices [15]. This
equation is expected to give no additional moduli parame-
ters. It was proved for the U�1� case [3] and is consistent
with the index theorem [5] in general N as seen below.

Equation (5) implies asymptotic behavior �! 1
c H0H

y
0

for z! 1. Then the tension (3) can be rewritten as

T � 2�ck � �i
c
2

I
dz@ log�detH0� � c:c: (6)

We thus obtain the boundary condition on S1
1 for H0 as

det�H0� � zk for z! 1. Since any point at infinity S1
1

must belong to the same gauge equivalence class, elements
in H0 must be polynomial functions of z. (If exponential
factors exist they become dominant at boundary S1

1 and the
configuration fails to converge to the same gauge equiva-
lence class there.) From the expression (6), we find that
detH0�z� has k zeros at z � zi, which can be defined as the
positions of vortices: detH0�zi� � 0.
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There exists a redundancy in the solution (4): physical
quantities H and W1;2 are invariant under the ‘‘V trans-
formation’’

H0 ! VH0; S! VS; detV � const � 0; (7)

with V � V�z� 2 GL�N;C�, whose elements are holomor-
phic with respect to z. Here, the third condition is neces-
sary to maintain the vortex number k unchanged. The
moduli space MN;k for k vortices in U�N� gauge theory
can be formally expressed as a quotient

M k;N �
fH0�z�jH0�z� 2 MN; degdet�H0�z�� � kg
fV�z�jV�z� 2 MN; detV�z� � const � 0g

; (8)

where MN denotes a set of holomorphic N � N matrices
and ‘‘deg’’ denotes a degree of polynomials.

The moduli space of vortices.—The V transformation (7)
allows us to reduce degrees of polynomials in H0 by
applying the division algorithm. After fixing the V trans-
formation completely, any moduli matrix H0 is uniquely
transformed to a triangular matrix, which we call the
standard form,

H0 �

P1�z� R2;1�z� R3;1�z� � � � RN;1�z�
0 P2�z� R3;2�z� � � � RN;2�z�

..

. . .
. ..

.

RN;N�1�z�
0 � � � 0 PN�z�

0BBBBBBB@

1CCCCCCCA (9)

with the monic polynomial Pr�z� �
Qkr
i�1�z� zr;i� and

Rr;m�z� 2 Pol�z; kr�. Here Pol�z; n� denotes a set of poly-
nomial functions of order less than n. The standard form
(9) has one-to-one correspondence to a point in the moduli
space. Since det�H0� �

QN
r�1 Pr�z� � z

k asymptotically
for z! 1, we obtain the vortex number k �

PN
r�1 kr

from Eq. (6) and realize the positions of the k vortices as
the zeros of Pr�z�. Collecting all matrices with given k in
the standard form (9) we obtain the whole moduli space
MN;k for k vortices. Its generic points are parameterized
by the matrix with kN � k and kr � 0 for r � N,

H0 �
1N�1 � ~R�z�

0 P�z�

 !
; (10)

where P�z� �
Qk
i�1�z� zi� and � ~R�z��r � Rr�z� 2

Pol�z; k� is an N � 1 vector. This moduli matrix contains
the maximal number of the moduli parameters. The di-
mension of the moduli space is dim�MN;k� � 2kN coin-
ciding with the index theorem [5].

The standard form (9) has the merit of covering the
entire moduli space only once without any overlap. How-
ever, we should parameterize the moduli space with over-
lapping patches to clarify the global structure of the moduli
space. We can parameterize the moduli space by a set of
k�N�1Ck patches defined by

�H0�
r
s � zks�rs � T

r
s�z�; Trs�z� 2 Pol�z; ks�: (11)

Coefficients of monomials in Trs�z� are moduli parameters
16160
as coordinates in a patch. We denote this patch by
U�k1;k2;...;kN�. We can show that each patch fixes the V
transformation (7) completely including any discrete sub-
group, and therefore that the isomorphism U�k1;k2;...;kN� ’
CkN holds. The transition functions between these patches
are given by the V transformation (7), completely defin-
ing the moduli space as a smooth manifold, MN;k ’S

U�k1;k2;...;kN�.
To see this explicitly we show an example of one vortex

(k � 1). In this case there exist N patches

1 0 �b�N�1

. .
. ..

.

0 1 �b�N�N�1

0 . . . 0 z� z0

0BBBB@
1CCCCA ’

1 �b�N�1�
1 0

. .
. ..

.

0 z� z0 0

0 . . . �b�N�1�
N 1

0
BBBBB@

1
CCCCCA ’ � � � :

(12)

Transition functions among these patches are given
by the V equivalence (7) as �b�N�1 ; . . . ; b�N�N�1;1� �
b�N�N�1�b

�N�1�
1 ; . . . ; b�N�1�

N�2 ;1; b
�N�1�
N � � � � � � b�N�1 �1; b

�1�
2 ; . . . ;

b�1�N�1; b
�1�
N �. These b’s are the standard patches for CPN�1

and are called orientational moduli. We thus have
MN;k�1 ’ C�CPN�1 recovering the result [6] obtained
by a symmetry argument.

Properties of the moduli space.—We have found that
zeros of Pr�z� in Eq. (9) are the positions of the vortices.
We will clarify the meaning of the remaining moduli
parameters Rr;m�z� in Eq. (9) from now on. For simplicity
we consider the patch U�0;...;0;k� given in Eq. (10) and study
~R�z� therein. To this end, we shall introduce the basis
fei�z�g (i�1;2;...;k) of the space of polynomial Pol�z; k�.
For example, the simplest complete basis is the monomial
basis eim�z� 	 zi�1. Elements of Pol�z; k� can be expressed
by coefficients of monomials in that basis. In terms of vor-
tex positions zj given in the polynomial P�z� �

Qk
i�1�z�

zi�with degree k in Eq. (10), we define another basis called
point basis (Lagrange interpolation coefficient)

eip�z� 	
Yk

j�1;�i�j�

�z� zj
zi � zj

�
; eip�zj� � �ij: (13)

The point basis is defined only when zi � zj for i � j,
namely, for the separated vortices. Elements in Pol�z; k�
can be expressed by values at different k points fzig in this
basis. For example, ~R�z� in (10) can be expressed as ~R�z� �Pk
i�1

~bie
i
p�z� with ~bi 	 ~R�zi�. Notice that the k by k matrix

U in eip�z� �
Pk
n�1 U

i
nenm�z� gives the Vandermonde deter-

minant detU�1 �
Q
k
j>i
1�zj � zi�, ensuring the com-

pleteness of the point basis (13). We thus find one-to-one
correspondence between ~bi and ~R�z�.

Now we are ready to understand the physical meaning of
the moduli parameters in ~R�z�. To this end, we consider the
infinitesimal SU�N� isometry with an element

u��� � 0N�1 � ~�
~�y 0

 !
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( ~� is an N � 1 vector) acting on H0 as

�H0�z� � v��; z�H0�z� �H0�z�u���; (14)

with an infinitesimal V transformation (7) v��; z� needed to
pull back to (10). This leads to

� ~R�z� � ~�� ~R�z�� ~�y � ~R�z�� � ~s�y�z�P�z�: (15)

Here ~s�y�z� is a polynomial function for the pull back
which is uniquely determined for ~R to be in Pol�z; k� again.
Noting P�zi� � 0 (i � 1; . . . ; k) we obtain ~bi � ~R�zi� as
� ~bi � ~�� ~bi� ~�

y
� ~bi� by setting z � zi in (15). This is

precisely the SU�N� transformation law for CPN�1.
Namely, a set of (zi; ~bi) parameterizes C�CPN�1, like
the moduli of the single vortex mentioned above [16].
Taking into account the fact that H0 approaches to the
one in (12) for a single vortex with the orientational moduli
~bi in the vicinity of the ith vortex, with jz� zij  jz� zjj
for all j�� i� holding, we thus find the asymptotic form
(open set) of the moduli space for separated vortices,

M N;k �C�CPN�1�k=Sk	Sk�C�CPN�1� (16)

with the Sk permutation group exchanging the positions of
the vortices [17]. Here  denotes a map to resolve the
singularities on the right-hand side. Equation (16) can be
easily expected from physical intuition; for instance the
k � 2 case was found in [12]. The most important thing is
how orbifold singularities of the right-hand side in (16) are
resolved by coincident vortices, which we explain below.
In the N � 1 case, MN�1;k ’ Ck=Sk holds instead of (16)
[3].

Relation to the Kähler quotient.—Next we investigate
the relation between our moduli space and that from the
Kähler quotient [5] mainly in the patch U�0;...;0;k�. For that
purpose, it is important to introduce a surjective map from
the space of polynomials Pol�z� to Pol�z; k� by

q�z� � r�z� � s�z�P�z� � r�z� modP�z�; (17)

with q�z�; s�z� 2 Pol�z� and r�z� 2 Pol�z; k�. The last
equality in (17) gives a map from q�z� to r�z� by modulo
P�z�. We can extract the moduli parameters from P�z� and
~R�z� as constant matrices Z and �:

zei�z� 	 �Z�ije
j�z� modP�z�; (18)

~R�z�
1

 !
	 ���iei�z�: (19)

When we change the basis as e0i�z� � Ui
je
j�z� by U 2

GL�k;C�, these matrices transform as Z0 � UZU�1, �0 �
�U�1. This is precisely the complexified gauge trans-
formation appearing in the Kähler quotient construc-
tion [5] in which the moduli space is given by k by k
matrix Z and N by k matrix  . The concrete correspon-
dence is obtained by fixing the imaginary part of the
gauge transformation as MN;k ’ fZ;�g==GL�k;C� ’
f�Z;  �j�Zy; Z� �  y / 1kg=U�k�.
16160
For the separated vortices, the point basis (13) gives us
� for the orientational moduli and the diagonal matrix Z
whose elements correspond to the positions of the vortices

Z � diag�z1; z2; . . . ; zk�; ��
~b1 � � � ~bk
1 � � � 1

 !
: (20)

As we have mentioned above, the point basis (13) cannot
be used for coincident vortices, zi � zj for i � j. We can
deal with them by noting differentiations at zi naturally
arise in the limit zj ! zi. Let us assume that dI vortices
coincide at z � zI, and divide the labels i to distinguish
vortices as fig � f�I; �I�g with �I � 1; . . . ; dI. We define
the generalized point basis by

e�I;�I�p �z� 	
Xk
n�1

U�I;�I�ne
n
m�z�; (21)

1

��I � 1�!

d�I�1e�J;�J�p �z�

dz�I�1

��������z�zI

� �IJ�
�J
�I ; (22)

where U is a k by k invertible matrix, whose inverse and
determinant are given by

�U�1�m�I;�I� � m�1C�I�1z
m��I
I ; (23)

detU�1 �
Y
I

Y
J>I

�zJ � zI�dJdI ; (24)

respectively. In this basis any function can be expressed by
a set of differentiations at z � zI. When no vortices coin-
cide, dI � 1 for all I, the generalized point basis (21)
reduces to the point basis (13). The matrix Z in the basis
(21) takes the Jordan normal form

Z �I;�I�
�J;�J�

� �IJ�zI�
�I
�J
;zI �

zI 1 0

0 zI
. .

.

..

. . .
.

1
0 � � � 0 zI

0BBBBB@

1CCCCCA (25)

and ����I;�I� � ��I��I is given by

� I �
~R�zI� ~R0�zI� � � �

1
�dI�1�! @

dI�1
z ~R�zI�

1 0 � � � 0

 !
: (26)

Emergence of the Jordan matrix Z is analogous to instan-
tons in terms of the Hilbert scheme [18].

So far in this section, we have dealt with the only patch
U�0;...;0;k� to show correspondence between our construc-
tion and the Kähler quotient construction. In order to com-
plete the correspondence, we have to verify it over whole
region of the moduli space. In what follows we illustrate
the correspondence in the case of �N; k� � �2; 2�. The
moduli space MN�2;k�2 is parameterized by the three
patches U�0;2�, U�1;1�, U�2;0� defined in H0’s

1 �az� b
0 z2��z��

� �
;
z�� �’
�~’ z� ~�

� �
;
z2��z�� 0
�a0z� b0 1

� �
;
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respectively. The moduli data in these patches can be summarized by two matrices Z and � as follows

fZ;�g �
�

0 1
� �

� �
;
b a
1 0

� ��
;
�
� ’
~’ ~�

� �
;

1 0
0 1

� ��
;
�

0 1
� �

� �
;

1 0
b0 a0

� ��
: (27)
The first one corresponds to the matrices fZ;�g in
Eqs. (18) and (19) in the monomial basis. The V trans-
formation (7) between these three patches can be ex-
pressed by the complexified gauge transformation between
moduli data as �Z0;�0� � �UZU�1;�U�1� with appro-
priate U 2 GL�2;C�.

In conclusion we have determined the moduli space of
non-Abelian vortices in U�N� gauge theory with N Higgs
fields in the fundamental representation. The orbifold sin-
gularity appearing in the asymptotic form (16) of separated
vortices is correctly resolved in the full moduli space,
resulting a complete smooth manifold. The relation be-
tween our moduli space and the one proposed in the
D-brane technique is explicitly shown in the case of N �
k � 2. The complete identification for general (N; k) is an
important future work. By solving the master Eq. (5) nu-
merically we should be able to calculate the moduli metric.
Refining the discussion of reconnection of non-Abelian
cosmic string [12] using the moduli metric is to be ex-
plored. We also leave analysis of semilocal vortices in
U�NC� gauge theory with NF�>NC� flavors as a future
problem. Another interesting extension is studying non-
Abelian vortices on Riemann surfaces [19].
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