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Formation of Supermassive Black Holes through Fragmentation of Torodial Supermassive Stars
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We investigate new paths to supermassive black hole formation by considering the general relativistic
evolution of a differentially rotating polytrope with a toroidal shape. We find that this polytrope is unstable
to nonaxisymmetric modes, which leads to a fragmentation into self-gravitating, collapsing components.
In the case of one such fragment, we apply a simplified adaptive mesh refinement technique to follow the
evolution to the formation of an apparent horizon centered on the fragment. This is the first study of the
onset of nonaxisymmetric dynamical instabilities of supermassive stars in full general relativity.
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The formation of black holes from neutron stars, iron
cores, or supermassive stars is expected to be associated
with a characteristic gravitational wave signal which may
give information about the collapse dynamics and the
physical environment of such objects. Therefore, and given
that gravitational wave detectors are already taking data or
are coming online, it is of prime importance to understand
the dynamical features of the gravitational collapse of
hydrodynamical systems.

The prototypical model of stellar collapse is an equilib-
rium polytrope subject to a radial or quasiradial perturba-
tion growing on a dynamical time scale. In spherical
symmetry, every general relativistic polytrope with index
N � 3 is unstable to radial oscillations [1]—in turn, there
exists a critical Nc < 3 for which the star is marginally
stable. Without spherical symmetry, rotation can increase
this critical value again [2]. The black hole formation from
the collapse of uniformly and differentially rotating poly-
tropes induced by this instability is a well-investigated
phenomenon, either with restriction to axisymmetry
[3–9] or without [10–13]. In the gauge choices usually
employed, the dynamical behavior of the system shows a
radial contraction of the star, accompanied by the forma-
tion of an apparent horizon at late times.

Black hole formation from a dynamically unstable non-
axisymmetric mode, however, has not been modeled so far.
Possible scenarios range from the development of a bar
mode, subsequent transport of angular momentum into the
shell and collapse of the central object, to fragmentation
and off-center production of one or several black holes. In
Newtonian theory, instabilities and fragmentation have
received considerable attention, specifically in the context
of binary formation from protostellar disks (e.g., [14–18]
and references therein) and compact object production in
stellar core collapse (e.g., [19–21] and references therein).
In [11], the authors also report signatures of an m � 4
fragmentation behavior in the collapse and centrifugal
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bounce of an N � 1 polytrope, but could not determine
the final state due to resolution issues.

The cooling evolution of supermassive stars can be
approximately described by the N � 3 mass-shedding
sequence when the angular momentum transport time
scales are short compared to the cooling time scale [22],
so that uniform rotation is enforced. This sequence has a
turning point for the onset of a quasiradial instability, and
numerical experiments confirm that the collapse remains
axisymmetric [23]. If the star is differentially rotating, the
cooling sequence is less constrained and might end in a
transition to nonaxisymmetric instability [24–26]. The
canonical expectation that a supermassive star produces
one central black hole with a low-mass accretion disk
might thus not be appropriate for differentially rotating
configurations.

In this Letter, we consider the production of a black
hole through the fragmentation of a general relativistic
polytrope. We focus on N � 3 polytropes to model the
radiation-pressure dominated equation of state of a super-
massive star. The softness of the equation of state enhances
the instability of the fragments compared to the common
choice N � 1 for neutron stars. To represent this process
accurately on a grid, we make use of an adaptive mesh
refinement technique, since a possibly highly deformed
apparent horizon needs to be located in some region of
the domain which is unknown in advance.

The investigation of the collapse of differentially rotat-
ing supermassive stars by Saijo [27] was based on a
sequence of relativistic N � 3 polytropes with a parame-
terized rotation law of the commonly used form j��� �
A2��c ���, where �c is the angular velocity at the
center, and the parameter A specifies the degree of differ-
ential rotation (A! 1 is uniform rotation). The sequence
was constrained by a constant central density �c � 3:38�
10�6 in unitsK � G � c � 1, and the choice A=re � 1=3,
where re denotes the equatorial coordinate radius.
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FIG. 1. Time evolution of the L2 norm of the Hamiltonian
constraint for different resolutions. The time is normalized to the
dynamical time scale tD � re
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FIG. 2. Time evolution of the mode amplitudes in the standard
resolution (65� 65� 33 points per patch). The amplitudes are
obtained from a Fourier decomposition of the density profile on
the equatorial plane circle at $ � 0:25re, the initial radius of
highest density.
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To examine the indirect collapse by fragmentation of
a polytrope with toroidal shape, we choose a model with
the same central density as in Saijo’s [27] models, but
with a ratio of polar to equatorial coordinate radius
rp=re � 0:24. The ratio of rotational kinetic energy to
gravitational binding energy is T=jWj � 0:227. While
the critical limit for the dynamical f-mode instability in
uniform density, uniformly rotating Maclaurin spheroids is
�T=jWj�dyn � 0:2738 (e.g., [28]), recent investigations of
the stability of soft (N � 3) differentially rotating poly-
tropes in Newtonian gravity [29–32] have shown that the
Maclaurin approximation is inappropriate for such sys-
tems, and generally find the critical �T=jWj�dyn to be below
the Maclaurin value. Consequently, the toroidlike star con-
sidered in this study might be unstable to nonaxisymmetric
perturbations. Here we present the first investigation of
black hole formation through this instability.

All simulations have been performed in full general
relativity. The only assumption on symmetry is a reflection
invariance with respect to the equatorial plane of the star.
The gauge freedom is fixed by the generalized 1� log
slicing condition for the lapse function [33] with f��� �
2=�, and by the hyperbolic-type condition suggested in [8]
for the shift vector.

The computational framework is the CACTUS, which also
provides a module to solve the geometric part of the field
equations in the well-known BSSN form [34–36]. In ad-
dition, the CARPET driver [37] is used for mesh refinement
in CACTUS. The hydrodynamics part of the field equations
is evolved using the high-resolution shock-capturing piece-
wise parabolic method-Marquina implementation in the
WHISKY module [12,38], and a gamma law equation of
state (P � ��=N). We are thus using a set of well-tested
tools to evolve the general relativistic hydrodynamics
equations.

To numerically construct the axisymmetric initial model
described in the introduction, we use the RNS initial data
solver [39]. With the parameters described above, the
model has toroidlike structure, with an off-center density
maximum, but a nonzero central density. After mapping
the model to the hierarchy of Cartesian grids provided by
CARPET, a small perturbation of the form

��x� ! ��x�
�

1�
1

�re

X4

m�1

�mB$ sin�m��
�

is applied with �m � 0; 1 and � �
P

i�i. Here, $ denotes
the cylindrical coordinate radius. In addition, the poly-
tropic constant K is reduced by 0.1% to induce collapse
if the model is radially unstable. After perturbing the
model, the constraint equations are not solved again, since
the amplitude B is chosen such that the violation of the
constraints by the initial perturbation is about an order of
magnitude smaller than that caused by the systematic error
induced by the m � 4 symmetry of the Cartesian grid (cf.
Figs. 1 and 2). A typical amplitude used is B � 10�3, but a
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test with B � 10�4 has also been performed to ensure that
the system is not sensitive to the choice of B [40].

For most simulations, a fixed box-in-box mesh refine-
ment with 5 levels is used to accurately resolve the central
high-density ring. The three innermost grids cover the star,
while the two outermost ones push the outer boundaries to
6:4re. The typical resolution used was 65� 65� 33 per
grid patch, leading to a central resolution of �x � 10�2re.
However, simulations with 49� 49� 25, 97� 97� 49,
and 129� 129� 65 points per grid patch were also per-
formed to demonstrate decreasing constraint violation with
increasing resolution; for the last setup, a simulation with a
uniform grid setup would need to cover the equatorial
plane of the star alone with 320 grid points to achieve the
same central resolution.

To determine the amplitude of a specific mode in the
equatorial plane, we perform a projection onto Fourier
modes at certain coordinate radii [41,42]. Care must be
taken in interpreting the results when the system deviates
1-2



FIG. 3. Time evolution of the equatorial plane density using
the perturbation parameters �m � �1m. Shown are isocontours of
the logarithm of the rest-mass density. The four snapshots extend
to 0:37re and are taken at t=tD � 0, 6.43, 7.14, and 7.45, respec-
tively. They show the formation and collapse of the fragment
produced by the m � 1 instability. The last slice contains an AH
demarked by the thick white line. Note that the shades of gray
used for illustration are adapted to the current maximal density at
each time, and that darker shades denote higher densities.

FIG. 4. Time evolution of the equatorial plane density using
the perturbation parameters �m��2m. The snapshot times are
the same as in Fig. 3. In this case, two fragments are forming.
Constraint violations have forced us to terminate the simulation
before AHs could be located, (see main text).
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significantly from axisymmetry, since the interpretation of
the projection curve as a circle assumes @� to be a Killing
vector. In addition to the Fourier extraction, we monitor the
evolution of the rest mass and the constraints.

For the standard grid setup (65� 65� 33 points per
patch), and with �1...4 � 1, the evolution of the moduli of
the equatorial Fourier components at the initial radius of
highest density is shown in Fig. 2. It is evident that,
initially, the m � 4 component induced by the Cartesian
grid is dominant. However, the star is unstable to m � 1
and m � 2, and these modes consequently grow into the
nonlinear regime, their e-folding times being rather close.

The rest mass is conserved numerically within 1.8%
(with 65� 65� 33 points per patch) to within 0.2%
(129� 129� 65 points per patch). An approximate mea-
surement of the e-folding times and mode frequencies can
be obtained within an error of 5%–10% related to ambi-
guities in defining the interval of extraction. All setups
show consistent results within this uncertainty. In units of
the dynamical time scale, which is defined here as tD �
re

������������
re=M

p
, the e-folding times are � 0:93tD for m � 1,

and �0:84tD for m � 2, respectively. Mode frequencies
are �3:05=tD for m � 1 and � 3:31=tD for m � 2,
respectively.

To establish whether a black hole is formed by a frag-
ment it is necessary to cover the fragment with signifi-
cantly more resolution than affordable by fixed mesh
refinement. Hence we have implemented a simplified adap-
tive mesh refinement scheme to follow the system to black
hole formation: In this scheme, a tracking function, here
provided by the location of a density maximum, is used to
construct a locally fixed hierarchy of grids moving with the
fragment. Additional refinement levels are switched on
during contraction, until an apparent horizon is found.

Since the e-folding times for m � 1 and m � 2 turn out
to be close, the number and interaction behavior of the
fragments in the nonlinear regime depend sensitively on
the initial perturbation. Thus setups with �m � �1m and
�m � �2m are used to follow the formation and evolution
of a specific number of fragments.

The time evolution of the equatorial plane density for
�m � �1m is shown in Fig. 3. While the initial model is
axisymmetric, it has already developed a strong m � 1
type deviation from axisymmetry at t � 6:43tD, which,
consequently, evolves into a collapsing off-center frag-
ment. At t � 7:45tD, we find an apparent horizon (AH),
using the numerical code described in [43]. The AH is
centered on the collapsing fragment at a coordinate radius
of rAH � 0:16re, and has an irreducible mass of MAH �
0:24Mstar. Its coordinate representation is significantly de-
formed: its shape is close to ellipsoidal, with an axes ratio
of �2:1:1:1. The AH is covered by three refinement levels
and 50 to 100 grid points along each axis.

The evolution using �m � �2m is shown in Fig. 4. Two
orbiting and collapsing fragments are forming. However,
even with the adaptive mesh refinement method we use,
16110
constraint violations prevent us from continuing the simu-
lation to the formation of AHs. Cell-based adaptive mesh
refinement, a better choice of gauge, or methods based on
discrete analysis (e.g., [44]) might be required in this case.

A preliminary gravitational wave signal is shown in
Fig. 5 for a 106M	 star at a distance of 1 Gpc. It is only
possible to derive a lower limit on the gravitational wave
amplitude with the current techniques, since the last part of
the evolution is outside of the causal past of most detectors.
With these limitations, we get a signal amplitude of about
10�18�M=106M	�=�d=1 Gpc�, and a frequency of about
5:5�106M	=M� mHz.

To summarize, we have studied fragmentation and black
hole formation of a general relativistic equilibrium poly-
trope of index N � 3. The polytrope has been shown to be
unstable to cylindrical perturbations of the form r sin�m��,
with m � 1; 2, which consequently grow to one or more
1-3
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FIG. 5. Example of a gravitational wave signal. The extracted
signal is normalized to a 106M	 source at a distance of 1 Gpc,
and an observer inclination of � � 0. Note that tD � 182 s in
this case.
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self-gravitating fragments. We have applied an adaptive
mesh refinement method to resolve the system accurately.
In the m � 1 case, we have found an apparent AH in the
spacetime, indicating that a black hole has formed.

The dynamics of a nonaxisymmetric single-star collapse
of this type differ significantly from the quasiradial cases
usually investigated. From the often considered case of
quasiradial collapse, to bar formation and subsequent col-
lapse, to fragmentation and fragment inspiral, we have a
range of possible dynamical scenarios which may be con-
nected to discernible observable features in their gravita-
tional wave signature. In that sense, the evolution
presented here can be considered as an example of such
processes.
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