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We present a theory of interaction of magnetic Mn ions depending strongly on the number (Ne) of
electrons in a quantum dot. For closed electronic shells, we derive the RKKY interaction and its
dependence on magnetic ion positions, quantum dot energy quantization wg, and the number of filled
shells Ns. For partially filled shells, the many-electron magnetopolaron effect leads to effective carrier
mediated ferromagnetic Mn-Mn interactions. The dependence of the magnetopolaron energy on magnetic
ion positions, quantum dot energy quantization w, and the number of electrons Ne is predicted.
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The problem of the interaction of magnetic ions con-
trolled by free carriers is of interest in a number of areas of
condensed matter physics, from nanospintronics [1,2], cre-
ating and controlling magnetic properties of bulk and low-
dimensional semiconductors [3—16], to the competition of
Kondo and RKKY physics in heavy fermions and mixed
valence compounds [17,18]. Attempts to create hybrid
systems consisting of few magnetic ions in a controlled
electronic environment include few magnetic ions probed
optically in CdTe quantum dots [12,13], on a surface of a
solid probed by a spin-flip STM [2], in bulk GaAs [7] by
STM, and in both Mn-doped nanocrystals [8—10] as well as
quantum dot tunneling devices embedded in a magnetic
barrier [11]. Theoretically, interaction of carriers with
magnetic impurities in quantum wells [5,6], nanocrystals
[8,9], and quantum dots [4,13—-16] has been investigated,
including both mean field theory of noninteracting elec-
trons interacting with a large number of Mn ions [14] as
well as few-particle effects coupled with a single Mn ion
[15,16]. In this Letter, we present a theory of carrier
mediated interaction of magnetic Mn ions placed in a
controlled, strongly interacting, electronic environment
provided by a quantum dot (QD) filled with Ne electrons,
an artificial atom. The quantum dot allows for engineering
of total electron spin and the electron-Mn interaction by
tuning the electron number Ne with gates. Recent advances
in controlled positioning of impurities in solids [2,7] allow
us to anticipate future control over the position of Mn ions.
We focus here on self-assembled quantum dots with well-
defined electronic shells [19] where the number of elec-
trons is controlled by external gates [20]. The electronic
ground states correspond to spin singlet closed shell con-
figurations for Ne = 2,6, 12, ..., while for partial shell
filling total spin is maximized according to Hund’s rules
[19,20]. We find that the carrier mediated Mn-Mn interac-
tion can be grouped into two distinct classes controlled by
the number of electrons in the dot. For electron numbers
corresponding to closed shells, we find oscillatory RKKY
interaction, while for electron numbers corresponding to
partially filled shells, electron-electron interaction leads to
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electron spin polarization, and the Mn-Mn interaction is
found to be mediated by many-electron magnetopolaron
effects.

We consider a quasi-two-dimensional quantum dot
with parabolic confinement, a model suitable for self-
assembled quantum dots [19], containing Ne interacting
electrons and a pair of magnetic Mn ions at positions R,
and R,. The pair of magnetic ions is treated here as a
starting point for a many-Mn system. The single-particle
states and energies of an electron in a parabolic QD cor-
respond to two coupled harmonic oscillators with quantum
numbers m and n, ¢,,,(x, y) = ¢,,(x)¢,(y), where x and y
are electron coordinates in the plane of the quantum
dot, with z being the growth direction. The lowest three
one-dimensional harmonic oscillator states are qoo(;) =
e M)A, (X)) =xe /a4, and
0r(x) = (x> = e */*/(8w2)\/4, with X =x/€, and
€y =1/ Jwg. Here wy is shell spacing, and length and
energy are measured in effective Bohr radius ay and ef-
fective Rydberg Ry. The single-particle energies E,,, =
(n + m + 1)w, form degenerate electronic shells with de-
generacy g, = s + 1(s = n + m) and shell spacing w,.
The electron-Mn sp-d exchange interaction is modeled
here by a contact ferromagnetic interaction [3] H,p, =
—J%D]ljl - §8(7 — R), where S(M) is electron (Mn) spin,
#(R) is electron (Mn) position, and J2P = J.2/d is inter-
action strength, with d the thickness of the quantum dot.
The antiferromagnetic Mn-Mn interaction Hyinovin =
JuM, - M, is proportional to the exchange coupling pa-
rameter J;, = Jgoz) exp{—A[(R2/ay) — 1]}, which strongly
depends upon a separation R, = R; — R, between two
Mn ions. Here ay is a lattice constant and J(lg) is a nearest-
neighbor interaction. The strength J;, of exchange cou-
pling between the Mn ion and its next-nearest neighbor is
reflected in the value of A. We choose A = 5.1, correspond-
ing to J;, for the interaction between the next neighbor Mn
ions,about 12% of J gg) which is consistent with experimen-
tal measurement [21].
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Following Ref. [16], we write the many-electron many-
Mn Hamiltonian in second quantization form. Denoting
annihilation (creation) c; (cifg) operators for electrons in
single-particle states {n, m} = {i} and using Mn spin rising
and lowering operators M ", M~, the Hamiltonian can be
written as:

H= gvnpBMY + gunpgBM5 + J oMy - M,
Jii(Ry)
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The first line in Eq. (1) is the Hamiltonian of the Mn
subsystem, including Mn-Mn interactions. The fourth term
describes the interaction of Mn ions with electrons. It
consists of three terms. The first term measures difference
in spin up and down population and acts as electron
Zeeman energy in the field of a magnetic ion as well as a
source of electron spin conserving scattering. The second
and third terms involve scattering accompanied by the
flipping of electron spin compensated by the flipping of
Mn spin. The e-Mn interaction strength is proportional to
the electron-Mn exchange matrix elements J;;(R;) =
JP o (R ¢ (R;) determined by the wave function of the
two states ““i”” and *‘j”’ at the position R; of the /th Mn ion.
Hence, the effect of Mn is to introduce spin-related disor-
der. The last two terms in Eq. (1) describe the electron
Hamiltonian, with E; , the energy of an electron on the
single-particle orbital |i) with spin o; and (i, j|V,.|k, [)
two-body Coulomb matrix elements. Here gy, (g.) is the
Mn (electron) g factor, wp is the Bohr magneton, and B is
the magnetic field along the z axis. In what follows, we
adopt J, =15eVA®, JY =05meV, d=2nm, &=
10.6, m* = 0.106, Bohr radius ap = 52.9 A, Ry =
12.8 meV, g, = —1.67, gy = 2.02, ag = 0.54 nm with
typical w, = 4Ry and effective width [, = 26.45 A, ap-
plicable to II-VI (Cd, Mn)Te semiconductor QDs.

To calculate the electronic properties of the interacting
electron-Mn system, we expand the wave function in the
following basis of configurations |k): [k) =i}, i5,..., iyp) X
i1, j2r - SN IMMS), where lif, in, ..., inp) =
¢ iy ¢} 110),10) is the vacuum, and N T (N ]) is the
number of spin up (down) electrons, N T +N |= N,. The
basis states are grouped into spin up and spin down elec-
tron states for each configuration of Mn ions |M$M3), with
Mj; = *5/2, £3/2, £1/2. The number of possible elec-
tronic and magnetic configurations N is determined by the
number of single-particle orbitals Ng, the number of elec-
trons, the size M of the magnetic ion spin, and their number
Ny, given by Ne = 2M + DMu 3N _(GH(). Using
the basis states, we build the Hamiltonian matrix which

upon diagonalization gives the eigenergies and eigenstates
of the interacting Mn and electron complex. The purpose
of this work is to determine the effective Mn-Mn interac-
tion in the presence of electrons. The strength of carrier
induced Mn-Mn interaction can be measured in terms of
energy shift A = E, — E,, defined by the difference be-
tween the ground state energy E,. of a quantum dot con-
taining both Ny, Mn ions and Ne electrons, and energy E,
of a quantum dot with only electrons. Note that the pres-
ence of Mn ions removes angular momentum and spin
conservation and significantly increases computational
effort.

Let us first discuss Mn-Mn interaction for closed elec-
tronic shells, the quantum dot analog of RKKY interaction
in metals [17]. The simplest example is for two electrons in
an s shell. Because of the singlet electronic ground state,
there is no direct coupling of electron spin with Mn spins.
To gain insight, we evaluate the effect of the electron-Mn
interaction on the shift in ground state energy A in sec-
ond order perturbation theory as A = 3 (G|H,_y k) X
(k|H,_\n|GY/(Eg — E,), where |G) is the noninterac-
ting ground state and |k) is the noninteracting excited
configuration. After some algebra, the effect of carriers
can be expressed in terms of effective Mn-Mn inter
action Hamiltonian A = J(R,, R,)M, - M,, with effective
RKKY-like interaction strength J(R,, R,). Using the ana-
lytical form of the single-particle wave functions, an ana-
lytical form can be derived for the interaction strength as a
function of Mn positions:

R B = (N (L ak, - R

R =) (o e

(R, - Ry)* — (RT + R3) +2
4

B

}e-@mg)/z’
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where Mn positions are measured in quantum dot length
€y, and « and B are parameters controlled by the number of
shells and electron-electron interactions. For a quantum
dot with only s and p shells, 8 = 0, while for a quantum
dot with s, p, and d shells, we find & = 1.0 and 8 = 1.0.
Including e-e interactions renormalizes the many-particle
energy spectrum and gives a = 3.59 and B = 2.57. The
characteristic energy scale is proportional to the square
of the ratio of the 2D exchange constant (in units of
energy X area) divided by the characteristic area of the
quantum dot and divided by the shell spacing of the quan-
tum dot, denoted as Jy = (J2P/713)*(1/4®,). The smaller
the quantum dot, the stronger the RKKY interaction. The
interaction decays exponentially with both Mn ions mov-
ing away from the center of the dot but can be attractive
or negative, depending on Mn positions inside the quan-
tum dot. If we place one Mn ion in the center of the dot,

R, = 0, the RKKY interaction should vary as J(0, R,) =
— (22 /72 (1 /4w0)[B(2 — R3)/4]e %/2 with the posi-
tion of a second Mn ion. This isotropic interaction is

157201-2



PRL 96, 157201 (2006)

PHYSICAL REVIEW LETTERS

week ending
21 APRIL 2006

ferromagnetic for R, <2'/? and antiferromagnetic for
R, > 2'/2. The results of exact diagonalization of the full
Hamiltonian, Eq. (1), for Ne = 2 and two Mn ions, in the
absence of magnetic field, are shown in Fig. 1. Figure 1
shows the effective RKKY-like interaction strength
J(R,, R,) as a function of the position of the second Mn
ion with the first ion in the center. The interaction strength
J(R, Ry) is very well described by the analytical expres-
sion discussed above, with the ferromagnetic to antiferro-
magnetic transition at R, ~ 2'/2. The inset shows a map of
J (131, 132) as a function of R, showing isotropic dependence
and the regions with ferromagnetic and antiferromagnetic
RKKY coupling. Similar complex maps can be obtained
for different Mn ion positions. In Fig. 2(a), we show the
map of interaction strength J (131, I_éz) as a function of R, for
R, = (1,0). We see that the RKKY interaction is positive
(ferromagnetic) when the two ions are close together but
becomes negative (antiferromagnetic) when the second Mn
ion is moved to the opposite side of the quantum dot, in
agreement with the analytical expression in Eq. (2). To
engineer Mn-Mn interactions, we can also change the
number of carriers. Figure 2(b) shows the plot of the
interaction strength J(R,, R,) as a function of R, but for
a quantum dot with two filled shells (Ne = 6). We see that,
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FIG. 1 (color). RKKY interaction strength J(R;, R;,) as a func-
tion of Mn-Mn separation for a quantum dot containing two
electrons and two Mn ions. One Mn ion is located at the center of
the quantum dot R; = 0 and the second one on the x axis. The
dotted line indicates the change of the sign of J(R, R,), and
arrows schematically indicate the preferred orientation of Mn
spins. The inset shows the spatial map of RKKY interaction
strength J(0, R,), with red indicating negative, i.e., ferromag-
netic coupling.

in addition to the behavior shown in Fig. 2(a), there are new
regions of ferromagnetic and antiferromagnetic coupling
constant. This demonstrates the possibility of engineering
carrier mediated RKKY interaction in quantum dots with
Mn position, shell spacing, and the number of filled shells.

Let us now turn to partially filled shells. For partially
filled shells, electron spins couple directly to Mn spins,
resulting in a strongly coupled system, the magnetopo-
laron. The existence of magnetopolarons in quantum dots
has been predicted already in Ref. [4]. The polaron effect
can be illustrated by considering a single electron in the s
shell. Retaining only s shell electronic states, assuming
R, = —R,, ie., J(R)) = J(R,), allows us to introduce
total Mn spin M=M 1+ 1\712. Neglecting electron energy
and setting magnetic field B = 0, we obtain a simplified
one electron two Mn ions Hamiltonian:

N I, N . J
H = =2(M? = M} = M3) = (oo = el )M

+efieaMt + clieg M7 (3)

The first term corresponds to short ranged Mn-Mn anti-
ferromagnetic interaction classified by total Mn spin 0 =
M = M, + M,. The second term describes ferromagnetic
electron-Mn interaction. Noting that M is a good quantum
number, expanding eigenstates in the basis ¢ ||0)|M, M*)
and c:TIO)IM, M?), allows us to exactly diagonalize the
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FIG. 2 (color). Maps of RKKY interaction strength J(R;, R,)
as a function of the position of the second magnetic impurity R,
for R; =1 in a quantum dot containing (a) two and (b) six
interacting electrons. The red color indicates negative, i.e.,
ferromagnetic coupling, while blue indicates positive, i.e., anti-
ferromagnetic coupling. The first Mn is indicated by a yellow
arrow. The white arrows show different orientations of the
second Mn ion depending on its position.
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magnitude of polaron energy and its dependence on dis-
tance is found to depend strongly on the partially filled
shell and the degree of filling.

In summary, we formulate a theory of carrier mediated
Mn-Mn interactions in quantum dots. The interaction is
classified by electron numbers into two regimes: (a) closed
shells with RKKY interactions and (b) partially filled shells
where nonperturbative magnetopolaron effects dominate.
We derive explicit expressions for RKKY interaction and
present many-electron magnetopolaron energies for the
first three quantum dot shells. This opens up the possibility
to engineer magnetic properties on nanoscale using quan-
tum dots containing magnetic ions and an electrically
tunable number of carriers.
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FIG. 3 (color online). Energy shift A = E,. — E,, as a function
of separation between two Mn ions, one located at the center of
the quantum dot and the second one on the x axis, for different
electron numbers Ne. Results for partially filled s, p, and d
electronic shells are shown.

Hamiltonian, Eq. (3). We find the degenerate ground state
of the hybrid system, with electron spin parallel to the total
Mn spin, and energy E(M, +) = —(J,/2)M + (J1,/2) X
[M(M + 1) — 3]. In the absence of coupling to the elec-
tron spin (J;, = 0), the ground state energy is minimized
for the total Mn spin M = 0, i.e., antiferromagnetic Mn
arrangement. However, coupling to the electron spin gives
the minimum energy of the hybrid system for finite total
Mn spin M* = [(J,,/J12) — 1]/2. We can reach different
spin alignments, i.e., ferromagnetic (M™ = 5), canted (0 <
M™* < 5), and antiferromagnetic (M* = 0) by adjusting the
ratio 8 = J,,/J, with proper choice of the positions of a
pair of Mn ions. For M = M* = [(J,;/J2) — 11/2, the
energy is found to be E(M*, +) = —(J12/8){[(Js/J12) —
1> +70}. It is negative; i.e., the magnetopolaron is
formed. The binding energy of the magnetopolaron is a
nonmonotonic function of Mn-Mn separation due to two
different length scales, the decay A of short-range antifer-
romagnetic interaction, and decay €, = 1/,/w, of ferro-
magnetic carrier induced interaction. This is illustrated in
Fig. 3, where energy shift A of the ground state energy, the
magnetopolaron energy, is shown for the Ne = 1 electron
from exact diagonalization of the full Hamiltonian, Eq. (1).
The energy is negative and shows nonmonotonic depen-
dence on the length scale where J;, dominates and a
smooth decay on the length scale of a quantum dot where
J,s dominates. The formation of magnetopolarons in par-
tially filled p and d shells is also shown in Fig. 3. The
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