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Stabilizing Superconductivity in Nanowires by Coupling to Dissipative Environments
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We present a theory for a finite-length superconducting nanowire coupled to an environment. We show
that in the absence of dissipation quantum phase slips always destroy superconductivity, even at zero
temperature. Dissipation stabilizes the superconducting phase. We apply this theory to explain the
“antiproximity effect’ recently seen by Tian et al. in zinc nanowires.
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The effect of dissipation on macroscopic quantum co-
herence is currently a subject of considerable interest [1].
In the context of quantum bits (“‘qubits’), a dissipative
environment always increases the decoherence rate [2]. On
the other hand, superconductivity in a Josephson junction
is enhanced by dissipation [3]. In this Letter we examine a
particularly striking example of the latter phenomenon: the
stabilization of superconductivity in a nanowire by dissi-
pation in its environment.

In one-dimensional superconducting wires, quantum
phase fluctuations can destroy long-range phase coherence
even at zero temperature; however, finite superfluid density
can survive through the Berezinskii-Kosterlitz-Thouless
(BKT) physics [4]. The quantum action for a supercon-
ducting wire at zero temperature is equivalent to that of the
two-dimensional classical XY model [4] at finite tempera-
ture. The two phases of the latter correspond to the super-
conducting and insulating phases of the wire. In particular,
BKT vortices in the XY model correspond to phase slip
events in the wire in which the phase gradient unwinds by
2. The resistance of real nanowires can display both
insulating and superconducting behavior as temperature
is decreased [5—7]. Both thermal [8] and quantum [6,9]
phase slips play an important role in generating resis-
tance and destroying superconductivity. However, it is
not settled what determines which nanowires are super-
conducting [7]. In particular, it is unclear how important
dissipation is in determining the low-temperature phase of
nanowires [10,11].

In a recent experiment, Tian et al. [12] observed an
unexpected effect when a 2 um long, 40 nm diameter Zn
nanowire is sandwiched between two bulk superconduct-
ing electrodes. Under zero applied magnetic field, when
the electrodes are superconducting, the Zn nanowire ex-
hibits resistive behavior down to the lowest measurement
temperature. However, after a sufficiently strong magnetic
field B has suppressed the superconductivity of the elec-
trodes, the nanowire becomes superconducting at about
0.8 K. Tian et al. dubbed this phenomenon the ‘“‘antiprox-
imity effect” (APE). Here we present a theory suggesting
that this surprising effect is due to the dissipation at the
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boundary between the nanowire and electrodes. We show
that when the nanowire has a finite length, the ends of the
wire are mapped onto two parallel boundary lines that can
screen the vortex-antivortex interaction in the XY model.
This screening destroys the superconducting phase even at
T = 0. When the ends of the wire are coupled to a dis-
sipative environment, the screening becomes incomplete.
As a result, for sufficiently large dissipation the super-
conducting phase is stabilized. The importance of the
boundary dissipation has been suggested by Biichler
et al. [10].

We begin by summarizing the experimental findings
reported in Ref. [12]. Tian et al. prepared Zn nanowires
in the pores of porous polycarbonate or porous alumina
membranes [Fig. 1(a)]. They pressed In or Sn wires on
each side of the membrane to form circular disks approxi-
mately 1 mm in diameter that made contact to the ends of a
single nanowire or, more generally, a number of nanowires.
By applying a magnetic field above the critical field of the
electrodes but below the critical field of the Zn nanowire
(enhanced by the small diameter [13]), they suppressed the
superconductivity of the electrodes. They measured the
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FIG. 1. Schematic diagrams of experiment by Tian et al
(a) Experimental configuration: pores in polycarbonate mem-
brane contain nanowires, with In or Sn electrodes making con-
tact to the wire(s). In this case, only one wire is contacted.
Current / and voltage V are measured as shown. (b) Circuit
representation showing contact resistances R/2 to each electrode
and a capacitance C/2 from each half of the parallel plate
capacitor, assuming the single wire is placed symmetrically.
(c) Simplified model. For the purpose of damping, R and C
are connected in series across the nanowire.
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resistance and current-voltage (/-V) characteristics of their
samples using the four-terminal arrangement indicated in
Fig. 1(a). In this Letter we focus on the sample Z4, the
behavior of which is shown in Fig. 3(b) of Ref. [12]. This
sample had In electrodes and is believed to have contained
a single nanowire with length L = 2 um. When the In
electrodes were driven normal by the magnetic field, the Zn
nanowire exhibited a superconducting transition at a tem-
perature that decreased as the field was further increased.
In contrast, with zero applied field (hence superconducting
electrodes), the resistance showed a drop of about 20 () as
the temperature was lowered through the transition tem-
perature of the In (about 3.4 K), but the nanowire did not go
superconducting down to the lowest measurement tem-
perature (0.47 K).

Our model of the experiment is shown in Fig. 1(b).
When the electrodes are in the normal state, the nanowire
is connected to each of them via a contact resistance R/2.
We estimate the resistance of the electrodes themselves in
the normal state to be on the order of 1 m{), which is
negligible for our present discussion. The nanowire and its
contact resistance are in parallel with the capacitance of the
parallel plate capacitor formed by the two electrodes and
the intervening dielectric layer. Phase fluctuations in the
nanowire induce currents through the shunting resistance
and capacitor and are thereby damped. Assuming that these
current fluctuations do not leak into the measurement
circuitry, we use the effective circuit shown in Fig. 1(c).
Using the area A = 7(0.5 mm)? of the capacitor, the di-
electric thickness L = 2 um, and a dielectric constant for
polycarbonate € =2.9 [14], we find C = e€yA/L = 10 pF.

For superconducting electrodes, we investigate the
stability of a superconducting nanowire sandwiched be-
tween two superconducting leads. In this case, a super-
current can flow between the wire and electrodes, and the
contact resistances vanish. Thus for energy (frequency)
less than the bulk superconducting gap of the electrodes
the quantum wire is shunted by a capacitor. Later we show
that under such conditions the quantum fluctuations of the
superconducting phase drive the superfluid density of the
zinc nanowire to zero even at zero temperature. When the
superfluid density vanishes, Cooper pairs dissociate and
the wire becomes normal. In that case the equivalent circuit
of Fig. 1(c) becomes that of Fig. 2 where the quantum wire
acts as a normal resistor with resistance Ry. This explains
the Ohmic behavior at zero applied magnetic field and the
constant differential resistance dV/dI in the I-V curve
from zero voltage to about 500 nV.
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FIG. 2. Phase fluctuations ultimately drive the quantum wire
normal via depairing, giving it a normal state resistance Ry.

When the electrodes are driven normal by B = 30 mT,
the boundary resistances between the Zn wire and the
electrodes become nonzero. In addition, if the electrodes
are normal but the wire is superconducting (or vice versa),
there is resistance due to charge conversion processes [15].
For sample Z4 [Fig. 3(b)] of Ref. [12], we estimate R =~
20-80 €. The lower bound comes from the drop in resist-
ance when the electrodes become superconducting, and the
upper bound from the residual low-temperature resistance
for B = 30 mT. We note that the magnetic field depen-
dence of the residual low-temperature resistance suggests
that this resistance has a contribution from the wire as well.
This estimate gives f, = (2rRC)~! = 0.8-0.2 GHz and
hf, = 0.04-0.01 K, an order of magnitude lower than the
thermal energy at the lowest measurement temperature,
0.47 K. Thus in the relevant frequency and temperature
range the external circuitry behaves as a pure resistor (i.e.,
1/27fC — 0). As we show later, if this shunting resistance
is smaller than the quantum of resistance h/4e”> = 6.4 k(Q,
it damps the superconducting phase fluctuations suffi-
ciently to stabilize superconductivity. If the measurement
temperature is lowered below & f, we expect the residual
quantum phase fluctuations to destroy superconductivity
and cause a reentrant behavior. The fact that dissipation
can stabilize superconductivity is rather similar to the
behavior of the “resistively shunted (Josephson) junction”
(RSJ) [3]. However, unlike the RSJ, a quantum wire can
undergo depairing when the phase fluctuations are severe.
As a result the normal state resistance of the nonsupercon-
ducting wire does not have to exceed h/4e>. Our theory is
consistent with the observation that the APE practically
vanished when one of the electrodes was replaced with a
nonsuperconducting metal.

In the remainder of the Letter we present a theoretical
analysis of how dissipation suppresses phase slips in a
superconducting wire. Our main results are as follows:
(1) Through a duality transformation, we establish the
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FIG. 3. A finite-length quantum wire is mapped onto a 1 + 1
dimensional Coulomb gas sandwiched between two metallic
lines (the world line of the end points of the wire). In the absence
of dissipation, the “‘surface’ vortex densities o; and oz com-
pletely screen the logarithmic interaction between bulk vortices.
As a result, vortex-antivortex pairs unbind and the wire is
normal. In the presence of dissipation, the logarithmic interac-
tion is not completely screened, and the superconducting phase
is stable for sufficiently small shunt resistance.
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connection between quantum phase slips and BKT vortices
(instantons) in 1+ 1 dimensions. Our theory can be
viewed as an appropriate generalization of the RSJ model
to quantum wires. (2) At T = 0 an isolated superconduct-
ing wire of finite length is equivalent to a classical two-
dimensional electrostatic problem where bulk charges
(vortices) interact with two metallic boundaries each rep-
resenting the (imaginary-time) world line of the end points
of the quantum wire (Fig. 3). Because of screening, vorti-
ces separated sufficiently far apart in the imaginary-time
direction always unbind, and the wire is normal even at
T = 0. (3) With shunt resistance R, the screening is in-
complete. For 0 < R < h/4e?, and with 1/C = 0, the vor-
tices remain bound and the quantum wire is
superconducting at 7 = 0.

The imaginary-time action describing the quantum fluc-
tuation of the superconducting phase of a quantum wire is
given by § = [*_ dx gdtﬁ, where

L = (K/2)lo ¢l + (1/2u)|a,4]. (D

In Eq. (1) ¢(x, 1) = €!?™? is the phase factor of the super-
conducting order parameter at position x and time ¢, K is
the superfluid density, and u is the inverse compressibility.
At zero temperature (8 — o0), depending on K and u, there
are two possible phases: a superconducting phase and an
insulating phase. In the superconducting phase the topo-
logical singularity in ¢, i.e., the vortices in space and time,
is bound. In the insulating phase, the space-time vortices
(or instantons) proliferate. From this point of view of the
quantum wire, a space-time vortex is a quantum phase slip
event.

In the presence of the external circuitry in Fig. 1(c) the
action in Eq. (1) acquires an extra boundary term (S —
S + Saiss) With Sgigs = [5 [ dtdr’ L given by

—(1/2[H(Da,n)]F(t — 7)o, ()] (2)

In Eq. 2) n = ¢(L/2,t)p(—L/2, 1) is the relative phase
factor of the two ends of the quantum wire and

F(t = 1) = (m/BR)Y |w,| " expliw,(t = )] (3)

-E diss =

Here R is the dimensionless resistance R = R/(h/4e?),
and w, = 27n/hp is the Matsubara frequency. We omit
the capacitance of the external circuitry because we are
interested in the temperature range kzT > hf, =
0.04-0.01 K where the reactance of the capacitance is
negligible. Clearly, this assumption would be invalid if
one were to repeat the experiment of Tian et al. [12] at
temperatures below 0.04 K; in particular, this treatment
cannot predict the expected reentrant behavior.

Next we perform the standard duality transformation
[16] keeping track of the finite spatial extent of the wire

to obtain Sp = [*, dx [§diLy + [§at [§dr Ly +

f{f dt L4, Where

Ly = %[B,X(x, t)]z + g[ax/\/(x’ t)]z —ix(x, )p,(x, 1)

Lus = 31020 + o1 = Doy () + 7(0)]

Lenas = —ilx(L/2, )og(t) + x(—L/2, o ()] 4
In Eq. 4) p,(x, 1) = >,0,6(x — x;)8(r — 1) is the vortex
density in space-time, and

orL(t) = Tid(£L/2,1)9,¢(=L/2, 1. )

After we have integrated out y, the first term in Eq. (4) is
the standard vortex Coulomb gas action, and the second
term is due to the coupling to the environment. The last
term is a boundary term arising from the finite spatial
extent of the quantum wire.

Equation (4) is quadratic in Y, so y is integrated out
exactly via the saddle point solution 6S/8y = 0, yielding

(1/K)afx +udix=—ip,, ud,xlipp==*iogr. (6)
If we define ®(x, 1) = —ix(x, 1), Eq. (6) becomes
(1/K)a?® +udi®=—p, ud,Plirp==*0og;. (7)

Equation (7) takes the form of a 2D electrostatic problem
with bulk charge density p, and surface charge density
o g Interms of ®, L, and L, 4 become

Ly= _i[atq)(x, NP — %[axq)(x, NP+ ®(x,0)p,(x, 1),

Lenas =[P(L/2,t)ap(1) + P(—=L/2, D)o (1)]. 8)

Substituting the solution ®.(x, 7) of Eq. (7) into Egs. (4)
and (8) we obtain an action, Sp[o;, ok, p, ], that depends
only on p, and o g:

1 (L2 B
Sp—— [ dx [ i, (x, 1)y (x, 1)
2)-1p 0

+fﬁdtfﬁdt’£diss
0 0
+ ﬁ) P A ®(L/2, Do p()+ D~L/2, D0, (D] (9)

To obtain a final action that depends only on the vortex
density p,, we integrate out o, o; . Since Eq. (9) depends
on o, oy, only quadratically, we can again use the saddle
point method, solving S/80 x = 0 and substituting the
solution back into Eq. (9). In a wire of length L, the result is
that vortices with spatial coordinates x; (—L/2 < x; <
L/2) interact via

Sp = ZQiG(xiJ Xjit = 1;)Q;. (10)

i#j

In Eq (10) G(.xl', .xj, tlj) = ﬁZwU(GI + Gz)eiw"ti./' with

KCL |x,—x| — Cx,+x,

i i+x;

G, =,— ,
u w,S,

K ¢y, Cy, sgn(w,)vKR s\ "1
G2 = 4l 1+ > .
U ,s; 4hﬁwsL/2

(1D

157005-3



PRL 96, 157005 (2006)

PHYSICAL REVIEW LETTERS

week ending
21 APRIL 2006

Here ¢, = cosh(w,x/+Ku) and s, = sinh(w,x//Ku).
Expanding Eq. (11) for small w, shows that vortices
with time separation much greater than L /+/uK interact via

Sp = ZQin[_(h/ZR) 1n(|fij|/7'0) +J;(t)) (12)

i#j

In Eq. (12) J;; is a short-range interaction (in time). It is
important to note that the long-range logarithmic inter-
action is controlled only by the resistive dissipation.
Aside from the irrelevant short-range interaction J;j,
Eq. (12) is identical to the phase slip action of a single
RSJ (we identify Q; with the phase slip). For R <1 the
phase slip and antiphase slip form bound pairs, while for
R > 1 the phase slip and antiphase slip unbind [3,17]. The
former corresponds to the superconducting phase of the
quantum wire, while the latter corresponds to the non-
superconducting phase.

For an isolated quantum wire a similar calculation leads
to a short-range action for the vortices [Eq. (10)] with
Glx,xpt; — 1)) = %anGle"“’"(’f_’f). Since the interac-
tion is short ranged, phase slips and antiphase slips always
unbind. As a result a free, finite-length quantum wire is
always nonsuperconducting, even at zero temperature. Our
results are fully consistent and agree in spirit with those of
Biichler ef al. [10], who derived the phase slip interaction
from phenomenological boundary conditions. In the cur-
rent work, we derive the boundary effects and the phase
slip interaction in the presence of dissipation exactly.
Consequently, we have an explicit phase slip interaction,
valid at both long and short time scales as is required for a
quantitative understanding of the phase slip physics of a
quantum wire.

As emphasized earlier, a piece of physics of the quantum
wire not present in the RSJ is the fact that as phase
fluctuations suppress the superfluid density to zero,
Cooper pair disassociation will take place before the wire
becomes a Cooper pair insulator. Once electrons depair, the
wire can no longer be described by the phase-only action
given in this Letter. This is quite similar to the case of
superconductor to nonsuperconductor quantum phase tran-
sitions in homogeneous films, where electron tunneling
always finds a closing energy gap at the phase transition
[18]. Thus, the normal state resistance of the wire is not
directly related to the shunt resistance R used in our purely
bosonic model and which determines the fate of the wire.
Finally, we note that the asymptotic interaction between
vortices far separated in time is valid when h/kgT >
L/\uK. For nonzero temperatures, a sufficiently long
nanowire acts as an infinite wire. When the BKT vortices
are bound, the nanowire exhibits the transport properties of
an attractive Luttinger liquid [19] and hence exhibits super-
conductinglike characteristics.

To conclude, in this Letter we present a theory for the
quantum phase slips of a superconducting nanowire, and

the effect of environmental dissipation on them. We apply
this theory to explain the antiproximity effect recently
observed by Tian et al.. We attribute the recurrence of
superconductivity when the electrodes are driven normal
by a magnetic field to the onset of dissipation from the
boundary resistance between the quantum wire and the
electrodes. This dissipation suppresses phase fluctuation
in the wire and stabilizes superconductivity.
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