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Phonon Effects on Spin-Charge Separation in One Dimension
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Phonon effects on spin-charge separation in one dimension are investigated through the calculation of
one-electron spectral functions in terms of the recently developed cluster perturbation theory together with
an optimized phonon approach. It is found that the retardation effect due to the finiteness of phonon
frequency suppresses the spin-charge separation and eventually makes it invisible in the spectral function.
By comparing our results with experimental data of TTF-TCNQ, it is observed that the electron-phonon
interaction must be taken into account when interpreting the angle-resolved photoemission spectroscopy
data.
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It is commonly accepted that most one-dimensional
(1D) correlated electronic systems cannot be properly
described by the traditional Fermi liquid theory; instead,
their behavior is well predicted by the Luttinger liquid
theory [1–4]. One of the key features of the Luttinger
liquid is the spin-charge separation: the low-energy exci-
tations are not quasiparticles with charge e and spin 1=2
together, rather, they are collective modes of spin and
charge excitations separately, called spinons and holons.
Since a spinon and holon move with different speed, they
eventually decouple. Following earlier works [1–4], many
studied spin-charge separation with various theoretical
schemes. In particular, one could explore the existence of
the spin-charge separation by calculating the spectral func-
tion [5–10], which has a direct relation to the angle-
resolved photoemission spectroscopy (ARPES). In some
recent works, the spinon and holon branches have been
observed by ARPES performed on some 1D materials
such as SrCuO2 [11–14]. Because both electron-electron
and electron-phonon interactions exist in many low-
dimensional materials, it is important to address the
role of these interactions on the spin-charge separation
[6,15–19].

The one-dimensional Holstein-Hubbard model (HHM),
which is the simplest model involving both electron-
phonon (e-p) and electron-electron (e-e) interactions, has
been used extensively to describe some low-dimensional
materials. Since electrons in these materials are strongly
correlated, the interplay between the electron-phonon in-
teraction and Coulomb repulsion should have a profound
effect on the spin-charge separation, and we expect to
observe these effects by investigating the single-particle
excitation spectra. The spectral function provides valuable
insights into the usually complicated many-body systems,
such as high-temperature superconductors, cuprate ladder
compounds, and organic conductors. For example, very
recently, by using the exact diagonalization method,
Fehske et al. [20] calculated the spectral function of the
Holstein-Hubbard model on a finite system and found a
06=96(15)=156402(4)$23.00 15640
Mott-insulator to Peierls-insulator transition at a compat-
ible ratio of the e-e to e-p interactions.

Bearing these in mind, we compute the one-electron
spectral function of the HHM by applying the recently
developed cluster perturbation theory (CPT) [8,21,22] to-
gether with an optimized phonon approach [23–25]. The
spectral function at full frequency region with rich satellite
structures is obtained in the model of both e-e and e-p
interactions for the first time. Phonon effects on spin-
charge separation are focused in the presence of e-e inter-
actions from weak to strong coupling. It is found that the
retardation effect due to the finiteness of phonon frequency
does not favor the spin-charge separation. In weak inter-
action regimes, a peak in the spectral function was ob-
served which is consistent with the existence of a metallic
phase as proposed recently by Clay and Hardikar [26].
Furthermore, it is observed that one must take the
electron-phonon interaction into account when interpreting
the ARPES experimental data in the one-dimensional
material.

The HHM accounts for a tight-binding electron band,
on-site Coulomb repulsion between electrons of opposite
spin, and coupling of charge carriers to local phonons:
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where cyi;��ci;�� creates (annihilates) an electron with� on-
site i, and byi and bi are creation and annihilation operators
of the local phonon mode at site i, respectively. t is the
electron hopping constant between nearest neighbor sites
which will be set as the energy unit in our calculations, !0

is the bare phonon frequency, and g is the electron-phonon
coupling constant.

For the calculation of the spectral properties within
the framework of CPT [8,21], one divides the lattice into
fully equivalent clusters of finite sites. For each cluster, we
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FIG. 1. The obtained spectral function A�k;!� of (a) the
large-!0 Holstein model and (b) the negative-U Hubbard model
at half filling. HO and SP stand for holon and spinon excitations,
respectively.
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calculate the Green’s function Gi;j�z��� G�i;j�z� �G
�
i;j�z��,

with G	i;j�z� defined as

G	i;j�z� � h�0jc	i
1

z	 �H � E0�
c
j j�0i; (2)

where c�i � cyi , c�i � ci, and j�0i being the ground state
of the cluster, which is obtained by using the Lanczos exact
diagonalization method within an optimized phonon ap-
proach [24,25] under open boundary conditions. Two terms
in Gi;j corresponding to electron and hole propagation,
respectively, can be obtained. The CPT treats the inter-
cluster hopping by a strong-coupling perturbation, i.e.,
(t=U) expansion. The lowest-order CPT approximation to
the Green’s function gives

GCPT�k; z� �
1

N

X

i;j

e�ik�i�j� ~Gi;j�Nk; z�; (3)

where ~Gi;j�Q; z� is the Green’s function of the full system
and N is the size of clusters. The spectral function is then
A�k;!� � � 1

� Im�GCPT�k; z��, where z � !� i� with �
defines the width of peaks in the spectral function. Since
the Fermi energy is set to zero, the spectral function has the
symmetry of A�k;!� � A��� k;�!� due to the electron-
hole symmetry of the model (1).

In the absence of interactions, A�k;!� obtained by the
CPT method is exact [8,21], while for interacting models,
the accuracy of CPT depends on the size of the cluster and
the number of optimal phonons chosen. To test the accu-
racy of the approach we use, we calculated the spectral
function of the Hubbard model with exactly the same
parameters as used by Benthien et al. [9] and obtained
agreeable results. We also calculated the first two spectral
momenta and they match exactly to those obtained by
White [27]. Furthermore, based on our previous technique
analysis [23], system parameters were carefully chosen in
this work to ensure that our results mimic the thermody-
namic limit. Results obtained in this Letter were forN � 6,
� � 0:1t, and three optimized phonons at each site, with
relative error 10�5 for the total energy [23].

Three energy scales govern the physics of the HHM: the
on-site Coulomb repulsion (U), the electron-phonon cou-
pling (� � 2g2=!0), and the bare phonon frequency (!0).
The ground state of the system at half filling is a Mott-
Hubbard insulating (MI) state when U is large, and shows
spin-density-wave fluctuations. When electron-phonon in-
teraction dominates, the system is in the Peierls insulating
state (PI), characterized by the charge-density wave where
both spin gap and change gap are finite, while in the MI
state, the spin gap vanishes. Very recently, it was reported
that there is a metallic region intermediate between the PI
and MI states with superconducting pairing correlation
dominates [26].

In the absence of phonons (g � 0), Eq. (1) is just the
Hubbard model whose physics have been extensively
studied and it is well known that in the Hubbard model,
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spin and charge separate [7–10]. On the other hand, when
U � 0, Eq. (1) is another extensively studied model, the
Holstein model (HM). In the strong electron-phonon cou-
pling region, the ground state of the Holstein model at half
filling is either a bipolaron insulating state in the large !0

limit, characterized by the configuration where each site is
either empty or doubly occupied because phonons produce
an attraction between the electrons, or a traditional band
insulating state in the small !0 limit [20,28]. In the weak
coupling region, the Peierls gap is suppressed by the pho-
non quantum fluctuations and the ground state is at the
metallic (M) phase [23,24,29]. When the phonon degrees
of freedom are integrated out, the spin-1=2 Holstein model
could be mapped onto the Hubbard model with an effective
dynamical attraction Ueff�!� � ��=�1�!2=!2

0�. Here
one also expects to observe the spin-charge separation. In
the antiadiabatic limit, i.e., !0 ! 1, the attraction be-
comes instantaneous and equals to the bipolaron binding
energy �, which has already been reported a long time ago
[28]. Obviously, for any finite phonon frequency !0, one
must consider the retardation effect fully, which could not
be simply presented by the above Ueff�!�.

To have a sense of the magnitude of !0, we give a
comparison of the spectral function of these two models
in Fig. 1. It is clearly shown that the spectral function of the
Holstein model is almost the same as that of the negative-U
Hubbard model. Some minor differences due to finiteness
of !0 are invisible in the figure (in other words, !0 � 8 is
almost at the antiadiabatic limit). This result is not trivial as
seen at first glance because it implies the single-particle
excitation of the system with a large phonon frequency is
similar to that at the antiadiabatic limit, which is consistent
with the existence of a quantum metal-insulator phase
transition in the Holstein model [26,29,30]. The peaks
labeled ‘‘SP’’ and ‘‘HO’’ in Fig. 1 refer to the spinon and
the holon branches, respectively, denoting the spin-charge
separation. Compared to the conventional Luttinger liquids
(e.g., the positive-U Hubbard model), the charge velocity
(v�) is smaller than the spin velocity (v�).

Figure 2 illustrates the retardation effects systematically.
Starting from the strong-coupling case (� � 2), we ob-
serve that as we decrease !0 from 4 to 2, the incoherent
2-2
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FIG. 2. The spectral function A�0; !� of the Holstein model.
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FIG. 3. Spectral function A�k;!� of the spinful (a) and
spinless (b) Holstein model. � � 0:5 and !0 � 1.
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FIG. 4. Spectral function A�0; !� of the Holstein-Hubbard
model at half filling. !0 � 1.
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part of the spectra becomes more important. As a conse-
quence, the spectral weights of the spinon and holon ex-
citations are much smaller. This could be regarded as a
continuation from Fig. 1: !0 � 1 ! 8! 4. When the
phonon frequency is further reduced, the spectral weights
corresponding to phonon excitations become dominant,
which is quite different from that in the antiadiabatic
regime where the ‘‘spinon’’ and ‘‘holon’’ excitations are
clearly the dominant ones. Therefore, due to the strong
mixing of the coherent and incoherent excitations, it is
difficult to single out the spinon and holon excitations,
instead, one observes an almost flat band dispersion with
exponentially small spectral weight. The dominant peaks
in the incoherent part of the spectra are related to multiples
of the (large) bare phonon frequency broadened by elec-
tronic excitations. Such an electron-phonon mixed nature
of excitations could be seen in the spectra away from the
Fermi surface.

It is quite natural to expect that the separation of spin and
charge excitation will become smaller with the decrease of
the electron-phonon coupling strength. This is clearly re-
flected in the spectral function. As shown in the first row of
Fig. 2, when we reduce the electron-phonon coupling � at
!0 � 4, the difference between the spinon and the holon
excitation at k � 0 becomes smaller and eventually invis-
ible. As we reduce phonon frequency, retardation comes
into play. It is also interesting to observe that there is an
excitation split in the weak coupling case (Fig. 2, � � 0:5,
!0 � 1). Such splitting is not due to spin-charge separa-
tion. In fact, by carefully comparing this spectral function
with that of a spinless Holstein model at corresponding
electron-phonon coupling, we found that the splitting is
caused by the polaron interaction.

Figure 3 shows the spectra of the up-spin electron for the
spin-1=2 Holstein model at half filling in comparison with
the spinless Holstein model. In the weak coupling regime
the two spectra are almost the same, indicating that the
existence of the down-spin electrons have nearly zero
effect on the spectral function of the up-spin electrons. It
shows that the phonon-mediated interaction between up-
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and down-spin electrons is very weak so they are almost
decoupled in this case. Thus the splitting of the excitations
cannot be attributed to the spin-charge separation, rather, it
is due to the interaction among polarons. Notice that there
is a small peak labeled as ‘‘A’’ in the spectral weight, which
is almost dispersionless in small k regime (see Fig. 3) and
is suppressed by the on-site repulsion U (see Fig. 4). Since
it is appeared in the metallic region intermediate between
PI and MI phases, we speculate the peak A may be related
with the electron pairing, as discussed recently by Clay and
Hardiker [26], although further investigations are definitely
deserved.

Now we turn the Coulomb interaction U on and discuss
its effect on the spectral function in the presence of
electron-phonon interaction. From Fig. 4, we also see
that the electron-electron interaction and the electron-
phonon interaction have opposite effect on the spin-charge
separation, as we intuitively expected. At given electron-
electron interaction (for example, U � 4), increasing the
electron-phonon interaction tends to broaden the excitation
bands and leave the spin-charge separation invisible. While
at fix electron-phonon interaction, the electron-electron
interaction increases the separation between the spin and
the charge excitations.

By further increasing the electron-electron interaction,
we illustrate the role of electron-phonon coupling in Fig. 5.
Comparing Fig. 5(b) with Fig. 5(a), one may still observe
the signature of spin-charge separation as � increases, but
the holon branch is much more broadened and its spectral
2-3



FIG. 5. Density plot of the spectral function A�k;!� for (a) the
Holstein-Hubbard, and (b) the Hubbard model. (c) The spectral
function A�0; !� of corresponding models at different electron-
phonon coupling. SH stands for the shadow band. !0 � 1.
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weight decreases, while the spinon branch is nearly un-
changed. This is clearly shown in Fig. 5(c). Consequently,
the so-called shadow band, which originates from the
diverging spin fluctuations at 2kF, [8,31–33] is nearly
gone, due to the fact that the shadow band is actually the
continuation of the holon band.

Finally, we make a comparison on our results to the
ARPES experiments of the quasi-one-dimensional organic
conductor TTF-TCNQ [13,14]. We notice that in the Fig. 7
of Ref. [14], the charge branch (b) and the spin branch (a)
are weakly connected with each other. The result can not be
explained by the Hubbard model alone [Fig. 5(b)]. As our
results suggest, the electron-phonon interaction must be
taken into account. From Fig. 5(a), it is clearly seen that the
dispersion of the charge branch is weakened in the spectral
function and the spinon branch is weakly connected to the
holon branch. A similar broadening due to phonon is also
observed in one-dimensional SrCuO2 [34]. These facts
indicate that one should expect a significant contribution
from the electron-phonon interaction to the spectra of these
strongly correlated quasi-one-dimensional materials. Of
course, our conclusions are based on numerical studies of
Eq. (1) so to have detailed analyses of experiments, one
may use models different from Eq. (1), but we believe the
essential physics remain unchanged.

In summary, by applying the CPT together with an
optimized phonon approach, we have studied the spectral
function of the one-dimensional Holstein-Hubbard model
at half filling. A comprehensive picture for the spectral
function in the presence of the electron-electron interaction
and electron-phonon interaction was presented. In particu-
lar, we addressed the issue of spin-charge separation and
found that the electron-electron interaction competes with
the electron-phonon interaction on the spin-charge separa-
tion, and the retardation effect due to phonons may dimin-
ish the spin-charge separation in the spectral function. We
15640
also found polaron splitting and observed a peak that may
related to electron pairing in the weak e-p coupling limit.
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