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Reaction Driven Convection around a Stably Stratified Chemical Front
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A vertical stratification of a light and hot fluid over a heavy and cold one is expected to be stable with
regard to buoyancy-driven convection. Here we show that chemical reactions can trigger convection
around chemical fronts even in cases where concentration and heat both contribute to a stable density
stratification. The balance between intrinsic thermal and solutal density gradients initiated by a spatially
localized reaction zone and double diffusive mechanisms are at the origin of a new convective instability,
the mechanism of which is explained by a displaced particle argument. Linear stability analysis of a
reaction-diffusion-convection model confirmed by nonlinear simulations delimits the instability region in
the parameter space spanned by the thermal and solutal Rayleigh numbers. Experimental systems in
which to test our theoretical predictions are proposed.
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Dynamic instabilities related to compositional and ther-
mal density gradients across the interface separating
two miscible fluids are known to affect the Earth’s core-
mantle boundary [1], lunar core dynamo [2], ocean and
atmosphere flows [3], as well as contaminant spreading [4]
in aquifers, for instance. Common understanding of the
origin of the convection involved in such applications is
that typically hot fluids rise and compositionally dense
solutions sink. Double-diffusive or thermohaline phe-
nomena can also play a role when compositional and
thermal density stratifications are of opposite signs [5,6].
Furthermore, geological, environmental, and industrial
flows usually involve chemical reactions, for example, in
oil biodegradation, radioactive decomposition, geochemi-
cal transformations, or combustion processes. To examine
how chemical reactions can affect the onset of convection
and trigger new modes of instabilities, we consider the
simple model of an autocatalytic reaction-diffusion (RD)
front propagating in a porous medium. Chemical fronts are
ubiquitous in biological [7], chemical [8], physical [9], and
environmental [10] systems. Because of compositional and
thermal differences between products and reactants, these
fronts are susceptible to intrinsic Rayleigh-Taylor [8,11]
and double-diffusive [5,12] instabilities. They thus present
an ideal model system to analyze self-organized chemo-
hydrodynamic patterns.

We show here that even in the case of a statically stable
density gradient across chemical fronts propagating verti-
cally in the gravity field, convection can be triggered by a
delicate coupling between the thermal and solutal gra-
dients driven by the reaction and double-diffusive mecha-
nisms. Thanks to a linear stability analysis (LSA) of a
simple reaction-diffusion-convection (RDC) model, we
identify a new mode of instability of statically stable
arrangements and propose a hypothesis based on a dis-
placed particle argument. Nonlinear simulations confirm
the prediction of the LSA.
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We consider a two-dimensional vertical porous medium
or thin Hele-Shaw cell (two glass plates separated by a thin
gap width) of infinite extent saturated with reactants. An
autocatalytic RD front propagates downward with a veloc-
ity v along direction x aligned with the gravity field, y
denoting the transverse direction. In a coordinate system
(z � x� vt; y) moving with the RD speed v and attached
to the front located at z � 0 (see Fig. 1), the dynamics of
the system in the presence of possible flows is described by
the following equations:

r � u � 0; (1)
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The velocity field u of the incompressible flow is de-
scribed by the 2D Darcy’s law (2); p is the pressure while
K is the permeability of the porous medium (given in a
Hele-Shaw cell of gap width a by K � a2=12). The trav-
eling chemical front is the base state of the reaction-
diffusion convection Eq. (4) for the concentration c of
the solute that affects the density � [Eq. (3)]. The exother-
mic chemical reaction triggers a temperature T distribution
also affecting � and governed by the energy balance in
Eq. (5). The thermal and concentration expansion coeffi-
cients, �T and �c, are taken positive so that the products of
the reaction behind the front are lighter than the reactants
ahead of it due to both thermal and solutal contributions of
T and c to the density. Here �H, the heat of the reaction, is
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FIG. 1 (color online). Base concentration and temperature
profiles of an exothermic reaction front descending in the gravity
field with the corresponding zoom on the spatially varying
reaction rate function F�z�. A physical argument based on the
behavior of a displaced particle predicts local instability of the
downward propagating exothermic front where dF=dz > 0.

PRL 96, 154501 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
21 APRIL 2006
negative as we consider an exothermic reaction. The mo-
lecular diffusion coefficient Dc, the thermal diffusivityDT ,
the viscosity �, as well as the reference density �0 of the
solvant and the specific heat of water cp are taken constant.
Finally let us take f�c� � ��c� c0��c� c1��c� c2� as a
model dimensional kinetic term known to yield chemical
fronts corresponding to a RD solution for which the stable
steady state c1 of the kinetics corresponds to the products
invading the unstable steady state c0 which stands for the
reactants [8,11,13]; c2 is model dependent and � is the
kinetic constant.

The diffusive state determines the prevailing concentra-
tion gradient, rates of reaction, and propagation and, hence,
the important scales of the problem. These are �c � c1 �

c0 for c� c0, � � ���c2��1 for time, U �
������������
Dc=�

p
for

velocity, and l �
���������
Dc�
p

for length. The initial temperature
ahead of the wave is T0, that behind the wave is then the
adiabatic value T0 ��T, where �T � ��H�c=�0cp.
We scale T � T0 by �T and incorporate the hydrostatic
pressure gradient �0g in the pressure term. The nondimen-
sional equations associated with the problem are then

r � u � 0; (6)

rp � �u� �RTT � Rcc�iz; (7)
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where F�c� � c�1� c��c� d�, the Lewis number Le �
DT=Dc, iz is the unit vector in the z direction, and d �
�c0 � c2�=�c > 0. The thermal and solutal Rayleigh num-
bers are defined as

RT �
�g�TK�T

�U
; Rc �

�g�cK�c
�U

; (10)

where � � �=�0 is the kinematic viscosity. In absence of
flow (u � 0), Eqs. (8) and (9) admit a reaction-diffusion
traveling front solution with c, T 	 0 as z! 1 and c, T 	
1 as z!�1.

Linear stability analysis is then employed to study the
delicate balance between the thermal and solutal density
gradients driven by the reaction and differential diffusion
of mass and heat for Le > 1 in the onset of convection. We
consider therefore the 2D transverse instability of the basic
front solution c0�z�, T0�z� traveling at RD speed v and of
the pressure profile p0�z� that are the solution of Eqs. (6)–
(9) when the fluid velocity u � 0. We introduce perturba-
tions for the concentration, the temperature, the pressure,
and the fluid velocity as c � c0�z� � �c, T � T0�z� � �T,
p � p0�z� � �p, u � �u, where �u � ��u; �w�. Inserting
these expressions into (6)–(9) and linearizing around the
base state, seeking solutions in terms of normal modes, i.e.,
writing ��c;�T;�p;�u;�w�� f �c; �T; �p; �u; �wg�z�exp�iky��t�,
where k;� are the wave number and growth rate of the
perturbations, we get

�u 0 � ik �w � 0; (11)

�p 0 � � �u� RT �T � Rc �c; (12)

ik �p � � �w; (13)

� �c� v �c0 � c00 �u � �c00 � k2 �c�
dF
dc

��������c0

�c; (14)

� �T � v �T0 � T00 �u � Le �T00 � Lek2 �T �
dF
dc

��������c0

�c; (15)

where prime means derivative with regard to z.
Differentiating (11) and (13) once with regard to z and
substracting the two equations after having multiplied the
second one by ik, gives �u00 � k2 �p0 � 0, which combined to
(12) allows us to eliminate �w and �p and gives

� �c� v �c0 � c00 �u � �c00 � k2 �c�
dF
dc

��������c0

�c; (16)

� �T � v �T0 � T00 �u � Le� �T00 � k2 �T� �
dF
dc

��������c0

�c; (17)

�u 00 � k2 �u � �k2�RT �T � Rc �c�; (18)

with �c; �T; �u	 0 as z! 
1. The system is unstable to-
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wards buoyancy-driven hydrodynamic perturbations as
soon as Re���k��> 0 for any given k. We solve (16)–
(18) using both a pseudospectral Chebyshev method and
a spatial discretization method. For each RT , and for each
k, Rc is calculated so that max�Ref��Rc; k;Le; RT�g� � 0.
The critical solutal Rayleigh number Rccr

and the critical
wave number kcr are determined by minimization over k.
The case where Rc and RT are both positive corresponds to
light and hot (exothermic reaction) products invading
heavy and cold reactants upwards which is always an
unstable situation. The double-diffusive thermohaline
mechanisms occur in the two quadrants where Rc and RT
have opposite signs. We focus here on the quadrant where
both Rc and RT are negative, which corresponds to light
and hot products invading heavy and cold reactants down-
wards which is a statically stable density stratification from
both solutal and thermal points of view. Intuitively, this
situation is expected to be always stable allowing only for
propagation of planar chemical fronts. Stationary stability
boundaries for Rc � 0, Le � 3 or 10, and d � 0:0021 are
shown in Fig. 2. The statically stable flow is unexpectedly
unstable for Rc � 0 and RT < RTcr

< 0. To understand this,
let us first examine the case Rc � 0 for which the concen-
tration jump across the front does not affect the density
which varies then only with temperature. One would ex-
pect, in that case, the system to be stable when RT < 0, as it
corresponds to a light over heavy arrangement due to an
exothermic reaction (�T > 0). However, according to lin-
ear theory the system is unstable with Le � 10 for RT <
RTcr
� �9:51. For instance with RT � �20, we find kcr �

0:06 and �cr � 0:015.
A physical explanation of this counterintuitive gravita-

tional instability emerges from an examination of the basic
profiles in Fig. 1. Let us consider that, in the region where
F�c�z�� increases (i.e., dF=dz > 0), a particle at concen-
tration ca and temperature Ta close to the product region is
displaced downward in a more reactive zone, where c � cb
and T � Tb with ca > cb and Ta > Tb as the exothermic
reaction is more advanced in zone a than in zone b.
FIG. 2 (color online). Stability boundaries for d � 0:0021,
Rc � 0, RT � 0, Le � 3 and 10. For Rc � 0, the flow is unstable
when RT <�20:67 (Le � 3) and RT <�9:51 (Le � 10).
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Because Le > 1, i.e., because heat diffuses faster than
mass, the particle’s temperature quickly tends to the tem-
perature Tb of its surroundings while slower species diffu-
sion allows it to keep its concentration close to ca. Thus the
energy source in the displaced particle is smaller than that
of the surroundings because F�ca�<F�cb�. Hence it will
not heat up as quickly as its neighborhood (recall �T > 0)
and is thus cooler; it may continue to sink, driving an
instability. This new mechanism of instability finds thus
its origin in the existence of a localized zone of reaction
and in the differential diffusion of heat and mass. It exists
only for Le > 1 as confirmed by the linear stability analy-
sis. Our physical argument also explains the whole Rc � 0
lower branch of the stability boundary of Fig. 2. In the
cases where Rc < 0, the system is more statically stable as
concentration changes now give an additional solutal con-
tribution to the light over heavy density stratification.
Nevertheless, the instability mechanism remains the same
but the exothermicity required to trigger convection be-
comes larger. Therefore, as �Rc becomes larger, larger—
in absolute value—and negative RT < RTcr

< 0 are re-
quired to make the argument operative. The instability
thus magnifies with a larger �RT and larger Le > 1 since,
in dimensionless units, the density jump across the front is
�gK=�U���=�0� � RTT � Rcc, and small changes in T
are more effective in changing the density at larger nega-
tive RT for a given Rc, as is also supported by linear
stability calculations. Because the region with dF=dz > 0
lies above a region with dF=dz < 0, it follows that a region
of local stability subdues the region of local instability as is
further confirmed by analysis of the critical eigenfunctions
of the linear stability analysis. Indeed, as seen in Fig. 3, the
critical eigenfunctions (with the infinity norm � 1) show
that the disturbance is largest above and ahead of the
advancing wave.

Nonlinear simulations of Eqs. (6)–(9) confirm the pre-
diction of this new instability. Figure 4 shows the nonlinear
dynamics of an unstable exothermic downward moving
front for Le � 10, Rc � 0, and RT � �20. For RT >
�9:51, the planar front is stable and travels downward
FIG. 3. Most unstable linear eigenfunctions with Rc � 0 and
RT � �20 (Le � 10).
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FIG. 4 (color online). Nonlinear simulations of an unstable
descending front for Le � 10, Rc � 0, RT � �20, d � 0:0021
in a system of width 200 with lateral periodic boundary con-
ditions showing the spatially modulated concentration field (left:
the products on top at c � 1 invading downwards the reactants at
c � 0) and the stream function (right: light and dark signify,
respectively, clockwise and counterclockwise rotations) at time
t � 640. The wavelength of the pattern is in good agreement
with the one predicted by the LSA and the flow is seen to push
and deform the isoconcentration lines.
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without any deformation. On the contrary, below the criti-
cal value RTcr

, cellular deformations triggered by convec-
tive rolls appear, but remain of small and constant
amplitude as the buoyancy-driven convection is subdued
downwards by the stable region where dF=dz < 0. The
nonlinear dynamics is therefore quite different from the
one observed for Rayleigh-Taylor fingering of chemical
fronts [14–16] (when Rc, RT are both positive) but looks
analogous to some double-diffusive dynamics previously
analyzed numerically for the case where Rc and RT have
opposite signs [12]. To test our theoretical prediction, we
propose that a suitable experimental candidate be the
downward propagation of exothermic (RT < 0) chemical
fronts for which products are lighter than reactants (Rc <
0) in insulated Hele-Shaw cells. A classification of the
various autocatalytic reactions suggests that reactions
such as the iodate-arsenous acid (IAA) [17], iodide-nitric
acid [18], and iodate-sulfite [19] systems where the solutal
and thermal effects are cooperative could be typical pos-
sible candidates. For typical values of parameters of the
IAA reaction [11] and taking �T � 2:57� 10�4 K�1 with
�T � 0:5 K [20], a gap width a � 1 mm, and �c�c	
1:35� 10�4 [21], we find Rc � �3:8 and RT � �3:6.
Clearly, the new instability will probably not be effective
for such typical experimental conditions in the IAA reac-
tion. However, increase of the absolute value of the
Rayleigh numbers can be achieved by increasing the gap
width a of the cell, changing initial concentrations and
choosing more exothermic reactions. In addition, typically
Le	 70 for autocatalytic reactions in aqueous solutions
[20], a larger value which should facilitate the onset of the
instability. Let us note that temperature changes across
autocatalytic fronts are typically small enough (of the order
of a few K) for our assumption of a temperature indepen-
dent kinetic constant to hold. The new instability might
also be operational in the case of combustion fronts trav-
15450
eling downward in porous media, for which products are
hotter and lighter than the heavy and cold fuel. In this case,
the effects of the Arrhenius dependence of the kinetic
constant on temperature should certainly be evaluated.
Eventually, the new proposed instability should now be
kept in mind to understand the origin of possible modes of
convection around localized reactive zones as encountered
in the applications mentioned in the introduction.
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121, 11 912 (2004).
[17] J. A. Pojman, I. R. Epstein, T. J. McManus, and

K. Showalter, J. Phys. Chem. 95, 1299 (1991).
[18] I. P. Nagy, A. Keresztessy, J. A. Pojman, G. Bazsa, and

Z. Noszticzius, J. Phys. Chem. 98, 6030 (1994).
[19] A. Keresztessy, I. P. Nagy, G. Bazsa, and J. A. Pojman,

J. Phys. Chem. 99, 5379 (1995).
[20] B. F. Edwards, J. W. Wilder, and K. Showalter, Phys.

Rev. A 43, 749 (1991).
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