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Measurements of the Exclusive Decays of the ��5S� to BMeson Final States
and Improved B�s Mass Measurement
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0031-9007=
Using 420 pb�1 of data collected on the ��5S� resonance with the CLEO III detector, we reconstruct B
mesons in 25 exclusive decay channels to measure or set upper limits on the decay rate of ��5S� into B
meson final states. We measure the inclusive B cross section to be ����5S� ! B �B�X�� � �0:177�
0:030� 0:016� nb and make the first measurements of the production rates of ����5S� ! B� �B�� �
�0:131� 0:025� 0:014� nb and ����5S� ! B �B�� � �0:043� 0:016� 0:006� nb, respectively. We set
90% confidence level limits of ����5S� ! B �B�< 0:038 nb, ����5S� ! B��� �B�����< 0:055 nb and
����5S� ! B �B���< 0:024 nb. We also extract the most precise value of the B�s mass to date, M�B�s � �
�5411:7� 1:6� 0:6� MeV=c2.
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PRL 96, 152001 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
21 APRIL 2006
DOI: 10.1103/PhysRevLett.96.152001 PACS numbers: 13.25.Gv, 13.66.Bc
The ��5S� resonance was discovered by the CLEO [1]
and CUSB [2] collaborations. Its production cross section
and mass were measured to be about 0.35 nb and �10:865�
0:008� GeV=c2 [1], respectively. Final states can be: B �B,
B �B�, B� �B�, B �B�, B �B��, B� �B��, B �B��, Bs �Bs, Bs �B�s , and
B�s �B�s . Here, B � Bu or Bd, and the � may be charged or
neutral (consistent with charge zero of the final state).
Throughout this article, we use B �B� to signify both B �B�

and B� �B. Including a symbol in parentheses indicates that
it may or may not be present. The B cross section in this
region is well described by the unitarized quark model
(UQM) [3], which predicts that about 1=3 of the b �b decay
rate is to B���s �B���s and that B� �B� dominates the inclusive B
rate. A previous CLEO measurement using inclusive Ds

production revealed that ��5S� ! B���s �B���s constitutes
�16:0� 2:6� 5:8�% of the total b �b rate [4]. A second
analysis [5], which performed exclusive reconstruction of
Bs mesons found ��e�e� ! B�s �B�s� � �0:11�0:04

�0:03 �

0:02� nb (about 1=3 of the total hadronic resonance cross
section). The two results are consistent with each other and
with predictions of the UQM.

In this Letter, we measure the contributions of various B
meson final states to the ��5S� decay. These measurements
may better constrain coupled-channel models in the �
mass region as well as near the lower  resonances [6].
We also exploit exclusively reconstructed B mesons from
this analysis and the corresponding Bs analysis [5] to
extract the most precise measurement of the B�s mass to
date.

CLEO III is a general purpose solenoidal detector that
includes a tracking system for measuring momenta and
specific ionization (dE=dx) of charged particles, a ring
imaging Cherenkov detector (RICH) to aid in particle
identification, a CsI calorimeter for detection of electro-
magnetic showers, and a muon system for identifying
muons [7].

The analysis presented here uses 420 pb�1 of data col-
lected on the ��5S� resonance (

���
s
p
� 10:868 GeV) at the

Cornell Electron Storage Ring. Using techniques pio-
neered at the ��4S�, we utilize two kinematic variables:
the energy difference �E � Ebeam � EB and the beam-

constrained mass Mbc �
������������������������
E2

beam � ~p2
B

q
, where EB ( ~pB) is

the energy (momentum) of the reconstructed B candidate
and Ebeam is the beam energy. Because of its low energy,
reconstruction of the photon inB� ! B� is not essential; to
maintain high efficiency, we do not reconstruct the B�.
(Charge conjugate final states are implied throughout this
Letter.)

To obtain a B meson sample of high purity, events are
required to have at least five charged tracks and a ratio of
the second to zeroth Fox-Wolfram moment [8], R2 < 0:25.
Candidate B mesons are reconstructed in exclusive final
states containing either J= or D��� mesons.
15200
Charged particles are required to pass standard selection
criteria and are identified by using their measured mo-
menta in conjunction with dE=dx, RICH, calorimeter,
and muon system information. For particle types i; j (i; j �
�;K; p� we define �2-like quantities for dE=dx as the
difference in the measured and expected dE=dx, normal-
ized by the uncertainty, i.e., �dE=dxi � �dE=dxmeas

i �
dE=dxexp

i �=�i, and for RICH as ��2
i;j � Li �Lj (differ-

ence in negative log-likelihood between hypotheses i and
j), respectively. We require at least 3 detected Cherenkov
photons from the RICH. Pions are identified by requiring
j�dE=dx� j< 4 or ��2

�;K < 5. For kaons, we define a com-

bined quantity, �2
comb � ��

dE=dx
K �2 � ��dE=dx� �2 � ��2

K;�

and require �2
comb < 0. Electron candidates are formed

from particles that have a ratio of calorimeter energy
(Ee) to measured momentum (pe) in the range 0:5<
Ee=pe < 1:25. Muons are identified by either having pene-
trated at least 3 layers of iron absorber or by having
deposited energy in the calorimeter consistent with a mini-
mum ionizing particle (E< 300 MeV). Photons are
formed from showers that have deposited at least
30 MeVof energy in the calorimeter and are not associated
with a charged track. Pairs of photons that have an invari-
ant mass within 2 standard deviations (�	 6 MeV=c2) of
the known �0 mass (M�0 ) [9] are defined as �0 candidates
and are kinematically constrained to give M�0 .

Candidate J= ’s are formed from ���� or e�e� pairs.
For muon pairs, we require 3:05<M���� <
3:14 GeV=c2. For e�e� combinations with 1:50<
Me�e� < 3:14 GeV=c2, bremsstrahlung photons are
searched for among the showers with no matching charged
track and within a 5
 cone about each electron’s initial
direction. For each ���� and e����e���� candidate, we
perform a mass-constrained fit to the J= mass [9] and
make a loose requirement that the fit �2 per degree of
freedom is less than 100. Candidate �� (K0

S) �K�0� mesons
are formed from ���0 (����) �K���� combinations
that have an invariant mass in the range from 620–920
(490–505) �820–970� MeV=c2. D� (D0) meson candi-
dates are reconstructed via their decays to K�����

(K���, K�������, and K����0) and are required
to have an invariant mass within 2� of their PDG [9]
values. To reduce combinatorial background in D0 !
K����0, we require p�0 > 400 MeV=c. Candidate
D�� ! D0�� (D�� ! D��0) decays are formed from
D and � candidates that have a mass difference in the
range 144<MD�� �MD0 < 147 MeV=c2 (139<
MD�� �MD� < 143 MeV=c2). Similarly, D�0 mesons are
reconstructed in D0�0, and the mass difference is required
to be in the interval 140<MD�0 �MD0 < 144 MeV=c2.

Candidate B mesons are reconstructed in the 25 decay
channels listed in Table I. For B! D� and B! D�� [10],
we take advantage of the helicity angle (�h) [11] distribu-
tion in these decays and require j cos�hj> 0:3. To improve
1-2
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TABLE I. Modes used in exclusive B meson reconstruction along with their product branching fractions (Bi) [9], reconstruction
efficiencies (�i), and expected yields (Ni

exp) in data assuming ����5S� ! B �B�X�� � 0:2 nb.

Mode i Bi (10�4) �i (%) Ni
exp

B� ! J= K� 1:18� 0:05 43:4� 0:9 4.3
B0 ! J= K�0, K�0 ! K��� 1:03� 0:08 25:6� 0:6 2.2
B0 ! J= K0

S 0:34� 0:02 37:2� 1:7 1.1

B� ! D0��, D0 ! K��� 1:87� 0:09 34:4� 0:5 5.4
B� ! D0��, D0 ! K����0 6:48� 0:56 12:8� 0:5 7.0
B� ! D0��, D0 ! K������� 3:67� 0:22 20:7� 0:7 6.4

B� ! D�0��, D�0 ! D0�0, D0 ! K��� 1:08� 0:11 11:1� 0:5 1.0
B� ! D�0��, D�0 ! D0�0, D0 ! K����0 3:76� 0:47 2:5� 0:2 0.8
B� ! D�0��, D�0 ! D0�0, D0 ! K������� 2:13� 0:23 6:9� 0:4 1.2

B� ! D0��, D0 ! K��� 5:11� 0:14 8:2� 0:3 3.5
B� ! D0��, D0 ! K����0 17:69� 1:36 3:0� 0:2 4.5
B� ! D0��, D0 ! K������� 10:02� 0:42 5:2� 0:3 4.4

B� ! D�0��, D�0 ! D0�0, D0 ! K��� 2:31� 0:42 2:1� 0:1 0.4
B� ! D�0��, D�0 ! D0�0, D0 ! K����0 7:90� 1:54 0:7� 0:1 0.5
B� ! D�0��, D�0 ! D0�0, D0 ! K������� 4:56� 0:84 1:5� 0:1 0.6

B0 ! D���, D� ! K����� 2:64� 0:25 30:9� 1:5 6.9

B0 ! D����, D�� ! D0��, D0 ! K��� 0:71� 0:06 22:0� 0:4 1.3
B0 ! D����, D�� ! D0��, D0 ! K����0 2:47� 0:27 4:0� 0:1 0.8
B0 ! D����, D�� ! D0��, D0 ! K������� 1:40� 0:12 12:2� 0:4 1.4

B0 ! D����, D�� ! D��0, D� ! K����� 0:78� 0:08 7:3� 0:5 0.5

B0 ! D���, D� ! K����� 7:08� 1:28 6:6� 0:4 3.9

B0 ! D����, D�� ! D0��, D0 ! K��� 1:75� 0:24 4:3� 0:2 0.6
B0 ! D����, D�� ! D0��, D0 ! K����0 6:08� 0:93 1:3� 0:1 0.7
B0 ! D����, D�� ! D0��, D0 ! K������� 3:44� 0:48 2:7� 0:2 0.8

B0 ! D����, D�� ! D��0, D� ! K����� 1:94� 0:29 1:7� 0:1 0.3

Total
P

Bi�i � 7:2
 10�4 60.4
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the signal-to-background ratio, we also reject low momen-
tum (backward-emitted) �0’s from the �� decays by re-
quiring cos�h >�0:7. Table I also shows the product
branching fractions, Bi, including the branching ratios of
the daughter modes [9], and the reconstruction efficiencies,
�i determined from Monte Carlo simulations [12–14] of
these decays followed by a GEANT [15] based detector
simulation. We validate our simulation and analysis pro-
cedure by measuring branching fractions for these decay
modes using data collected on the ��4S� resonance. Good
agreement with the world averages are found for all modes.

We first determine the total B meson yield by fitting the
invariant mass distribution formed from candidates in the
Mbc, �E region of 5:272<Mbc < 5:448 GeV=c2,�0:2<
�E< 0:45 GeV. The relatively wide �E region is used to
avoid biasing the background shape. The invariant mass
distribution, shown in Fig. 1, is fit to the sum of a second-
order polynomial background and a Gaussian signal shape
whose width is fixed to 12:3 MeV=c2, the expected aver-
age resolution of these candidates. We find a yield of
53:2� 9:0 events; fitting to the J= and D��� distributions
individually results in 11:2� 3:5 and 42:3� 8:4 D���
15200
events, respectively. Using
P

Bi�i � 7:2
 10�4 (see
Table I), we measure a cross section ����5S� !
B �B�X�� � �0:177� 0:030� nb.

Figure 2 shows the reconstructed events in the Mbc �
�E plane for ��5S� data. Signal and sideband regions are
defined using MC simulations of these final states. To
extract rates for B �B, B �B�, and B� �B� separately, we select
events in a signal region defined by the area between the
diagonals Mbc � 1:018�E� 5:248 GeV=c2 and Mbc �
1:018�E� 5:312 GeV=c2. This restricted signal region
has a total

P
Bi�i � 5:7
 10�4. Lower and upper side-

bands of the same �E width, also shown in Fig. 2, are
shifted to the left and right of the signal region by 10 MeV,
respectively.

The B �B, B �B�, and B� �B� final states are kinematically
well separated, but B��� �B���� final states have a large
degree of overlap, and with the limited statistics cannot
be distinguished. The B �B�� final states, because of the
limited phase space, peak at Mbc ’ Ebeam. If their rate is
large enough, their shape (in Mbc) will be sufficient to
distinguish them from the broad tail of B��� �B���� final
states that extend into the Mbc region of B �B��.
1-3



FIG. 1. The B meson invariant mass distribution for all B
decay modes listed in Table I in the ��5S� data. The points
are the data and the curve is the fit described in the text.
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Events in the signal region of Fig. 2 are projected onto
the Mbc axis (see Fig. 3) and fit to the sum of a flat
background and three Gaussian signals, one each for the
Mbc peaks produced by B �B, B �B�, and B� �B� events. The
signal resolutions are set to � � 4:0, 6.2, and 7:0 MeV=c2,
FIG. 2. Scatter plots of Mbc vs �E for all B decay modes listed
in Table I in the ��5S� data. The diagonal lines show the
expected signal (solid) and 2 sideband (dashed) regions, as
discussed in the text. The horizontal lines show the regions for
the various B �B�X� final states.

15200
respectively, as determined from Monte Carlo (MC) simu-
lation, and the background is fixed to 0:7 events=4 MeV,
as determined from the average of the upper and lower
sidebands. In the fit we use the precisely known mass
difference MB� �MB [9] and constrain its value to
47:5 MeV=c2 [16]. The middle peak, which corresponds
to ��5S� ! B �B�, is not constrained in the fit and is found
to be within 1� of the expected value.

The fitted yields are 3:7�3:1
�2:4 B �B, 10:3� 3:9 B �B�, and

31:4� 6:1 B� �B� events. Only the latter two are statistically
significant with significances, determined from the change
in log-likelihood when the contribution from each peak is
removed, of 4:3� and 7:6�, respectively. For B �B, we
compute an upper limit of 7.5 events at 90% confidence
level (C.L.). A potential excess in B��� �B���� is examined by
plotting the invariant mass of candidates in the B��� �B����
region defined by 5:351<Mbc < 5:429 GeV=c2 and
�0:2<�E< 0:45 GeV, which should exhibit a peak at
MB (see inset in Fig. 3). This Mbc ��E region includes
�88� 6�% of reconstructed B��� �B���� events, where the
uncertainty reflects the maximum variation based on the
possible B��� �B���� final states. That distribution is fit to the
sum of a Gaussian signal whose mean and rms width are
constrained to 5:279 GeV=c2 and 12:3 MeV=c2, respec-
tively, and a linear background shape. The yield of 6:7�5:1

�4:5
FIG. 3 (color online). Distribution of Mbc for all reconstructed
B modes listed in Table I for the ��5S� data. The histogram
displays the data, the curve shows the fit described in the text and
the flat line shows the background as determined from a fit to the
sidebands as discussed in the text. Distributions for
B��� �B���� (lightly shaded) and B �B�� (darker shading) obtained
from MC simulation of these final states are superimposed for
illustrative purposes. The inset shows the invariant mass of
candidates in the B��� �B����Mbc region with the fit superimposed.
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is not statistically significant, and we compute an upper
limit of 13.1 events at 90% C.L.

For the B �B�� final state, we select events in the region
5:429<Mbc <Ebeam GeV=c2 and �0:2<�E<
0:45 GeV and find three events consistent with MB. This
additional requirement on Mbc and �E has an efficiency of
�95� 2�%. While the combinatorial background is small
(	 0:3 events), the crossfeed from B��� �B���� into the
B �B�� signal region is �12� 6�%. If we conservatively
assume a B��� �B���� yield equal to its 90% upper limit value
and that the 3B �B�� candidates are also B��� �B����, we
would expect 1.0–2.9 B��� �B���� events to lie within the
B �B�� mass region. Based on this range of expected
background and 3 observed events, we take the most con-
servative upper limit on ��5S� ! B �B��, which corre-
sponds to 6.4 [17] events at 90% C.L. For illustration, we
superimpose on Fig. 3, 6:7B��� �B���� (lightly shaded, with a
ratio of 1:1:1 for B� �B��:B �B��:B �B�) and 3B �B�� (darker
shading) events. Yields, efficiencies, cross sections, and
relative production fractions are summarized in Table II.
We also show the cross sections as determined from the
J= andD��� modes separately. We find that B� �B� is indeed
dominant, comprising �74� 15�% of the B �B�X� rate.

Several sources of systematic uncertainty on the cross
sections’ measurements are considered. Potential errors
from the background normalization and shape are eval-
uated by using different background parametrizations and
varying the normalization within its uncertainty. The cor-
responding uncertainties in the cross sections vary from
3.1% for ��5S� ! B �B�X� to 16.7% for B �B. Uncertainties
in the reconstruction efficiencies include contributions
from charged particle tracking and identification, K0

s and
�0 reconstruction, and finite MC statistics. Averaged over
all modes, we find an uncertainty of 6.5%. The analysis
procedure was also checked by comparing B-meson
branching fractions in our signal modes measured using
data collected on the ��4S� resonance with PDG values
[9]. We find a relative difference of 1� 3%� �, averaged
over all modes, indicating that the efficiencies are well
understood. Errors due to the fixed signal shape parameters
are determined by varying them within their uncertainties
and refitting (3%– 4%). The occurrence of multiple candi-
TABLE II. Summary of yields, efficiencies, cross sections, and
B �B�X�� decays. Upper limits are set at the 90% C.L. Uncertainties

��5S� ! Yield (#Events) Efficiency (10�4)

B �B <7:5 5:7� 0:4
B� �B 10:3� 3:9 5:7� 0:4
B� �B� 31:4� 6:1 5:7� 0:4
B��� �B���� <13:1 6:3� 0:6
B �B�� <6:4 6:8� 0:5
����5S� ! B �B�X�� 53:2� 9:1 7:2� 0:5

J= Modes 11:2� 3:5 6:3� 0:5
D��� Modes 42:3� 8:4 0:9� 0:1
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dates in data (in a single event) are found to agree with
simulation to within 3%. Uncertainties on input branching
fractions and measured integrated luminosity contribute
3% and 2%, respectively. These systematic uncertainties
are added in quadrature and the resulting values are in-
cluded in the cross sections shown in Table II.

We proceed to use theMbc distribution from this analysis
in combination with the one for B�s in Ref. [5] to obtain an
improved measurement of the B�s mass. Since those results
used exactly the same data set as in this analysis, the largest
systematic error, the beam energy calibration of ��4:6�
2:9� MeV [5], cancels out in the (uncorrected) Mbc differ-
ence, Mbc�B

�
s� �Mbc�B

��. The rightmost peak in Fig. 3
corresponds to ��5S� ! B� �B�, and its mean value is mea-
sured to be �5333:1� 1:3�stat�� MeV=c2. The Mbc peak
value for ��5S� ! B�s �B�s from Ref. [18] is �5418:2� 1:0�
3:0� MeV, where we have added back the ��4:6�
2:9� MeV beam energy correction to obtain an uncorrected
value. The difference in theMbc peak values,Mbc�B

�
s

�B�s� �
Mbc�B

� �B��, can be translated into the mass differ-
ence, M�B�s� �M�B

�� after correcting for the
�1:7��0:1� MeV=c2 bias that is introduced due to our
use of reconstructed B�s� instead of B�

�s� mesons. We there-
fore find a mass difference M�B�s� �M�B

�� � �86:7�
1:6� 0:2� MeV=c2. The 1:6 MeV=c2 error is statistical
and the 0:2 MeV=c2 uncertainty is from systematic errors
in fitting our Mbc spectrum. Combining this mass differ-
ence withM�B�� � �5325:0� 0:6� MeV=c2 [9], we obtain
an improved value for the B�s mass, M�B�s� � �5411:7�
1:6� 0:6� MeV=c2. Using the well-measured Bs mass
from CDF of M�Bs� � �5366:01� 0:73� 0:33� MeV=c2

[19], we determine the 1� � 0� mass splitting M�B�s� �
M�Bs� � �45:7� 1:7� 0:7� MeV=c2. This mass splitting
measurement supersedes the previous CLEO result [5] of
�48� 1� 3� MeV=c2 [5] and is significantly more precise
than an earlier indirect measurement of �47:0�
2:6� MeV=c2 [20]. It is also consistent with the corre-
sponding splitting in the Bd system of �45:78�
0:35� MeV=c2 [9] as expected from heavy-quark symme-
try [21].

In summary, we have measured or set upper limits on the
rates for the various final states in ��5S� decay. We find
fractional contributions of various subprocesses in ����5S� !
are from statistical and systematic sources, respectively.

Cross Section (nb) �=����5S� ! B �B�X�� (%)

<0:038 22
0:043� 0:016� 0:006 24� 9� 3
0:131� 0:025� 0:014 74� 15� 8

<0:055 <32
<0:024 <14

0:177� 0:030� 0:016

0:295� 0:092� 0:028
0:161� 0:032� 0:015
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that predictions of the UQM [3] are consistent with our
findings that B� �B� is dominant, with a measured value of
�74� 15�% of the total B rate. The B �B� rate is measured to
be about 1=3 of the B� �B� rate. Upper limits on B �B,
B��� �B���� and B �B�� have also been presented. Lastly,
we utilized the Mbc peak positions for B� and B�s [5] to
extract M�B�s� � �5411:7� 1:6� 0:6� MeV=c2, which is
the most precise value of the B�s mass to date.
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