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Hawking Radiation from Charged Black Holes via Gauge and Gravitational Anomalies
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Extending the method of Robinson and Wolczek, we show that in order to avoid a breakdown of general
covariance and gauge invariance at the quantum level the total flux of charge and energy in each outgoing
partial wave of a charged quantum field in a Reissner-Nordström black hole background must be equal to
that of a (1� 1)-dimensional blackbody at the Hawking temperature with the appropriate chemical
potential.
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Introduction.—There are several derivations of
Hawking radiation. Hawking’s original one [1,2], which
calculates the Bogoliubov coefficients between in and out
states for a body collapsing to form a black holes, is the
most direct. An elegant derivation based on Euclidean
quantum gravity [3] has been interpreted as a calculation
of tunneling through classically forbidden trajectories [4].
It remains of interest to consider alternative derivations,
since each is based on different assumptions, which might
or might not be incorporated within a complete theory of
quantum gravity.

Recently, Robinson and Wilczek proposed a new partial
derivation of Hawking radiation [5], which ties its exis-
tence to the cancellation of gravitational anomalies at the
horizon. As explained there, this derivation has important
advantages: it localizes the source of the anomaly at the
horizon, where the geometry is nonsingular yet the equa-
tions simplify; it ties in with the effective field theory
approach to the membrane paradigm [6,7]; and the validity
of anomalies seems a particularly reliable assumption,
since anomalies are a profound feature of quantum field
theory. In this Letter we extend the analysis of [5] to
Hawking radiation of charged particles from Reissner-
Nordström (RN) black holes. To do this we will need to
consider gauge anomalies at the horizon in addition to
gravitational anomalies.

To identify the ground state of a quantum field, one
normally associates positive energy with occupation of
modes of positive frequency. But in defining positive fre-
quency, one must refer to a specific definition of time. In
the Boulware state, vacuum is defined in terms of the
Schwarzschild time. That is a natural definition of time
in the exterior region, but it becomes problematic at the
horizon. In this state freely falling observers feel a singular
flux of energy-momentum tensor as they pass through the
horizon. That unphysical behavior arises from nontrivial
occupation of modes that propagate nearly along the hori-
zon at high frequency. The Unruh vacuum [8], in contrast,
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uses a time variable adapted to the near-horizon geometry
to define energy. It associates (large) positive energy to the
offending modes, so they are unoccupied. The basic idea in
[5] is to form an effective theory that integrates out the
offending modes. Having excluded propagation along one
lightlike direction, the effective near-horizon quantum
field then becomes chiral, and contains gravitational
anomalies. The original underlying theory is generally
covariant, so failure of the effective theory to reflect this
symmetry should be relieved by introducing an extra ef-
fect. It was shown that the energy-momentum flux associ-
ated with Hawking radiation emanating from the horizon
cancels the anomaly at the horizon.

Setting.—Consider the partial wave decomposition of a
charged complex field in a RN black hole background. It
can be either a charged scalar or a Dirac fermion. The
gauge potential (At � ��) and the metric of the spacetime
are given by

A � �
Q
r
dt; (1)

ds2 � f�r�dt2 �
1

f�r�
dr2 � r2d�2

�d�2�: (2)

d2��d�2� is the line element on the (d� 2) sphere and f�r�
is

f�r� � 1�
2M
r
�
Q2

r2 �
�r� r���r� r��

r2 ; (3)

where r� � M�
�������������������
M2 �Q2

p
are the radii of the outer and

inner horizons. The surface gravity at the outer horizon is
given by � � 1

2�@rf�jr� .
Upon transforming to the r� ‘‘tortoise’’ coordinate de-

fined by @r
@r�
� f�r� and performing a partial wave decom-

position, one finds that the effective radial potentials for
partial wave modes of the field contain the factor f	r�r��

and vanish exponentially fast near the horizon. The same
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applies to mass terms or other interactions. Thus physics
near the horizon can be described using an infinite collec-
tion of massless (1� 1)-dimensional fields, each partial
wave propagating in a spacetime with a metric given by the
‘‘r� t’’ section of the full spacetime metric (2). This is a
kind of dimensional reduction from d dimensions to d � 2.
We exploit that simplification. Two points should be noted.
First, the effective two-dimensional current or energy-
momentum tensor are given by integrating the
d-dimensional ones over a (d� 2) sphere. In the four-
dimensional case, for example, J�

�2� �
R
r2d�2J�

�4� �

4�r2J�
�4��r�. Second, when reducing to d � 2, the

Lagrangian contains an r2 factor, which cannot be inter-
preted as the two-dimensional metric. This factor can be
interpreted as a dilaton background coupled to the charged
fields [9,10].

Since the horizon is a null hypersurface, modes interior
to the horizon can not affect physics outside the horizon,
classically. If we formally remove modes to obtain the
effective action in the exterior region, it becomes anoma-
lous with respect to gauge or diffeomorphism symmetries.
The underlying theory is, of course, invariant. Therefore
those anomalies must be cancelled by quantum effects of
the modes that were irrelevant classically. In the following
we show that the conditions for anomaly cancellation at the
horizon are met by the Hawking flux of charge and energy
momentum.

Gauge anomaly.—First we investigate the charged cur-
rent and gauge anomaly at the horizon. The effective
theory outside of the horizon r� is defined in the region
r 2 	r�;1
. If we first omit the ingoing modes in the
region r 2 	r�; r� � �
 near the horizon, the gauge cur-
rent exhibits an anomaly there. The consistent form of d �
2 Abelian anomaly (for review, see [11,12]) is given by

r�J
� � �

e2

4�
�������
�g
p ���@�A�; (4)

where ���� corresponds to left(right)-handed fields, re-
spectively, and �01 � 1. The consistent anomaly satisfies
the Wess-Zumino condition but the current J� transforms
noncovariantly. We can define a new covariant current [13]

~J � � J� �
e2

4�
�������
�g
p A���� (5)

which satisfies

r� ~J� � �
e2

4�
�������
�g
p ���F��: (6)

The coefficient of the covariant anomaly is twice as large
as that of the consistent anomaly.

The current is conserved @rJr�o� � 0 outside the horizon.
In the region near the horizon, since there are only out-
going (right-handed) fields, the current satisfies the anoma-
lous equation
15130
@rJ
r
�H� �

e2

4�
@rAt: (7)

Hence we can solve them in each region as

Jr
�o� � co; (8)

Jr�H� � cH �
e2

4�
	At�r� � At�r��
; (9)

where co and cH are integration constants.
Under gauge transformations, variation of the effective

action (without the omitted ingoing modes near the hori-
zon) is given by��W �

R
d2x

������������
�g�2�
p

�r�J
�
�2�, where � is

a gauge parameter. The current is written as a sum of two
regions J� � J�

�o����r� � J
�
�H�H�r�, where ���r� �

��r� r� � �� and H�r� � 1����r�. Then, by using
the anomaly equation, the variation becomes

��W�
Z
d2x�

�
��r�r����

�
Jro�J

r
H�

e2

4�
At

�

�@r

�
e2

4�
AtH

��
: (10)

The total effective action must be gauge invariant and the
last term should be cancelled by quantum effects of the
classically irrelevant ingoing modes. The quantum effect to
cancel this term is the Wess-Zumino term induced by the
ingoing modes near the horizon. The coefficient of the
delta function should also vanish, which relates the coef-
ficient of the current in two regions;

co � cH �
e2

4�
At�r��: (11)

cH is the value of the consistent current at the horizon. In
order to determine the current flow, we need to fix the value
of the current at the horizon. Since the condition should be
gauge covariant, we impose that the coefficient of the
covariant current at the horizon should vanish. Since ~Jr �
Jr � e2

4�At�r�H�r�, that condition determines the value of
the charge flux to be

co � �
e2

2�
At�r�� �

e2Q
2�r�

: (12)

This agrees with the current flow associated with the
Hawking thermal (blackbody) radiation including chemi-
cal potential, as will appear presently.

Gravitational anomaly.—We now discuss the flow of the
energy-momentum tensor. If we neglect quantum effects of
the ingoing modes, the effective theory exhibits a gravita-
tional anomaly. In 1� 1 dimensions the consistent anom-
aly reads [14,15]

r�T
�
� �

1

96�
�������
�g
p �	�@�@
�
�	 �A�; (13)

for right-handed fields. The covariant anomaly, on the
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other hand, takes the form

r� ~T�� �
1

96�
�������
�g
p ���@

�R � ~A�: (14)

Since the charged field � is in a fixed background of the
electric field and dilaton field �, the energy-momentum
tensor is not conserved even classically. We first derive the
appropriate Ward identity. Under diffeomorphism trans-
formations x! x0 � x� �, metric, gauge, and dilaton
fields transform as �g�� � ��r��� �r����, �A� �
��@�A� � @���A�, and �� � ��@�� and the action for
matter fields S	g��; A�;�; �
 is invariant. Hence, if there
were no gravitational anomaly, the partition function Z �R
D� exp�iS� would obey

� i
Z
dnx

�
�g���x�

�
�g���x�

� �A��x�
�

�A��x�

� ���x�
�

���x�

�
Z	g��; A�; �
 � 0: (15)

Using the energy-momentum tensor T�� �
2�����
�g
p �S

�g�� and

current J� � 1�����
�g
p �S

�A�
, the Ward identity becomes

r�T
�
� � F��J

� � A�r�J
� �

@���������
�g
p

�S
��

: (16)

Here we have used the fact that the dilaton couples to the
Lagrangian itself, and kept the term proportional to the
gauge anomaly. Adding the gravitational anomaly, the
Ward identity becomes

r�T
�
� � F��J

� � A�r�J
� �

@���������
�g
p

�S
��
�A�: (17)
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For a metric of the form (2), the anomaly is purely time-
like (Ar � 0) and At can be written as At � @rN

r
t

where Nr
t � �f02 � ff00�=192�. The covariant anomaly

is similarly written as ~At � @r ~Nr
t where ~Nr

t �
�ff00 � �f0�2=2�=96�. At the horizon, since f � 0, the
coefficients have opposite signs.

We now solve the Ward identity (17) for the � � t
component. Since we are considering a static background,
the contribution from the dilaton background can be
dropped. In the exterior region without anomalies, the
Ward identity is

@rTrt�o� � FrtJr�o�; (18)

and by using Jr�o� � co it is solved as

Trt�o� � ao � coAt�r�; (19)

where ao is an integration constant. Since there is a gauge
and gravitational anomaly near the horizon, the Ward
identity becomes

@rTrt�H� � FrtJr�H� � Atr�J
�
�H� � @rN

r
t : (20)

The first and the second term can be combined to become
Frt~J

r
�H�. By substituting ~Jr�H� � co �

e2

2�At�r� into this
equation, Trt�H� can be solved as

Trt�H� � aH �
Z r

r�
dr@r

�
coAt �

e2

4�
A2
t � N

r
t

�
: (21)

The energy-momentum tensor combines contributions
from these two regions T�� � T���o��� � T

�
��H�H. Under

the diffeomorphism transformation, the effective action
changes as
Z
d2x

������������
�g�2�
p

�tr�T
�
t �

Z
d2x�t

�
co@rAt�r� � @r

�
e2

4�
A2
t �N

r
t

�
�

�
Trt�o� � T

r
t�H� �

e2

4�
A2
t �N

r
t

�
��r� r� � ��

�
: (22)
The first term is the classical effect of the background
electric field for constant current flow. The second term
should be cancelled by the quantum effect of the incoming
modes. The coefficient of the last term should vanish in
order to restore the diffeomorphism covariance at the
horizon. This relates the coefficients:

ao � aH �
e2

4�
A2
t �r�� � N

r
t �r��: (23)

In order to determine ao, we need to fix the value of the
energy-momentum tensor at the horizon. As before, we
impose a vanishing condition for the covariant energy-
momentum tensor at the horizon. Since the covariant
energy-momentum tensor is related to the consistent one
by

~T r
t � Trt �

1

192�
	ff00 � 2�f0�2
; (24)
the condition reads aH � �2=24� � 2Nr
t �r��, where � �

2�=	 is the surface gravity of the black hole. The total flux
of the energy-momentum tensor is given by

ao �
e2Q2

4�r2
�

� Nr
t �r�� �

e2Q2

4�r2
�

�
�

12	2 : (25)

Blackbody radiation.—Now we compare the results (12)
and (25), with the fluxes from blackbody radiation moving
in the positive r direction at an inverse temperature 	 with
a chemical potential. The Planck distribution in the RN
black hole is given by

I����w� �
1

e	�w�c� � 1
; J����w� �

1

e	�w�c� � 1
;

(26)

for bosons and fermions, respectively, and c � eQ=r� [1].
I��� and J��� correspond to the distributions for particles
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with charge e. In the zero temperature limit, if (!� c) is
positive, those distributions are suppressed exponentially.
But if it is negative, they become �1 for bosons or fermi-
ons. This result needs further interpretation, especially for
bosons. In the bosonic case the absorption coefficient also
becomes negative, leading to the effect known as super-
radiance [16]. In the more straightforward fermionic case,
occupation numbers for these low frequency modes be-
come 1 at zero temperature, which leads to a nonzero flux
of radiation even at the extremal case.

To keep things simple, we focus now on the fermion
case. With these distributions, the flux of current and
energy-momentum become

Jr � e
Z 1

0

dw
2�
	J��w� � J����w�
 �

e2Q
2�r�

; (27)

Trt �
Z 1

0

dw
2�

w	J��w� � J����w�
 �
e2Q2

4�r2
�

�
�

12	2 :

(28)

The results (12) and (25), derived from the anomaly can-
cellation conditions coincide with these results (27) and
(28). Thus, the thermal flux required by black hole ther-
modynamics is capable of cancelling the anomaly. The
actual emission is obtained by propagating the emission
from these sources through the effective potential due to
spatial curvature outside the horizon. The resulting radia-
tion observed at infinity is that of a d-dimensional gray
body at the Hawking temperature.

Discussion.—We have derived the flow of charge and
energy momentum from charged black hole horizons. In
contrast to the conformal anomaly derivation [17], we did
not need to determine the current or energy-momentum
tensor elsewhere. This is consistent with the universality of
Hawking radiation. Solving the � � r component of the
Ward identity (17) would require detailed information on
the microscopic Lagrangian; likewise other components
like Trr are strongly dependent on such nonuniversal
physics.

We have assumed that covariant forms of current or
energy-momentum tensor should vanish at the horizon.
This is natural since physical conditions should be gauge
or diffeomorphism invariant. But we would like to under-
stand more deeply why we should use the covariant forms
instead of the consistent ones for boundary conditions at
the horizon. In [5], which employed different procedures
(integrating out modes in a sandwich surrounding the
horizon), the consistent anomaly appeared. The same re-
15130
sults (12) and (25), can be also derived by calculating the
effective action for two-dimensional free fields in the RN
black hole background and imposing regularity at the
horizon [18]. This indicates that the regularity is closely
related to the vanishing conditions of covariant currents.
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