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Diffusionless Crystal Growth in Rapidly Solidifying Eutectic Systems
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Using a local nonequilibrium model of solidification, experiments on rapid eutectic growth are
analyzed. An analytical solution of a problem of rapid lamellar eutectic growth under local nonequilib-
rium conditions in the solute diffusion field is found. It is shown that solute diffusion-limited growth of a
eutectic pattern is completely finished, and diffusionless growth of the chemically homogeneous
crystalline phase begins to proceed at a critical point V � VD, where V is the solid-liquid interface
velocity and VD is the solute diffusion speed in bulk liquid. A suppression of eutectic decomposition
occurs in the range V � VD that results in a growth of homogeneous crystal phase with the initial
(nominal) chemical composition of the binary system.
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FIG. 1. Microstructure of a thin film after rapid quenching of a
liquid binary Al-35 wt. % Mg system that is in a region of
eutectic composition [7]. A transition in microstructure is clearly
visible. The transition is sharp due to the abrupt change of
solidification mechanism.
Eutectic precipitation and growth is a well established
phenomenon in which a liquid solidifies into a solid con-
sisting of both an � phase and a � phase. To describe
eutectic solidification, Jackson and Hunt [1] suggested a
model of lamellar and rod coupled growth of � and �
phases. This classic model for quasiequilibrium solidifica-
tion describes the growth of � and � phases under control
of the solute diffusion in bulk liquid and at the interface.
The model [1] has a lot of interesting applications to
interpret experiments on eutectic growth [2,3]. In particu-
lar, Trivedi, Magnin, and Kurz [4] extended the model to
the case of solidification, in which the condition of quasie-
quilibrium at the interface is relaxed, that may play an
essential role in rapid eutectic growth.

Experiments on rapid eutectic solidification give a se-
quence of morphological transformations with an increas-
ing undercooling or cooling rate. In samples processed by
electromagnetic levitation [5], it has been shown that a
gradual transition from lamellar eutectic colonies to the
anomalous (irregular) eutectic pattern occurs in a Co-25.5
at. % Sb alloy with increasing undercooling.

At higher rates of quenching (of the order of
�105–106 K=s), a transition to a completely chemically
homogeneous crystalline microstructure with suppression
of the eutectic transformation has been observed by
Miroshnichenko [6,7]. Using x-ray and metallographic
analysis, he showed that the transition has led to the
crystalline phase with the initial (nominal) composition
of the liquid.

Walder and Ryder [8] investigated microstructures of
Ag-Cu alloys in a region of eutectic concentration in
samples processed by a melt fluxing technique. For the
Ag-Cu alloys, there is a critical solidification temperature
at which the maximum recalescence rate rises abruptly by
about 2 orders of magnitude, accompanied by significant
changes in the microstructure. These authors tried to ex-
plain this behavior on the basis of a transition from
diffusion-controlled growth of the eutectic to dendritic
growth of a supersaturated phase.
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Figure 1 exhibits a cross section of a thin film of Al-Mg
alloy after quenching from the liquid by the splat-
quenching method. At the surface where the quenching
rate was highest, a supersaturated solid solution has crys-
tallized. Within inner regions of the film which were
cooled much more slowly, the solid has the typical eutectic
microstructure. A transition from one type of structure to
the other one is sharp. It testifies that the transition from
one solidification mechanism to another one was sharp. For
instance, it has been found that solidification with eutectic
structure is finishing at a cooling rate of 5� 105 K=s in Al-
Mg alloys [9]. With the rates higher than 5� 105 K=s, the
rapid solidification gives rise to a supersaturated solid
solution of an initial chemical composition. These drastic
changes in microstructure can be interpreted as a sharp
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transition from partition solute diffusion transformation to
chemically partitionless (diffusionless) transformation at a
finite solidification velocity. Such transition leads to sup-
pression of growth of stable phases and the appearance of a
region of metastable solid solutions. Thus, it has been ex-
perimentally found that [6–9]: (i) the transition from eu-
tectic growth to a homogeneous solid solution of the initial
chemical composition may proceed in systems with eutec-
tic or near eutectic composition at high cooling rates or
deep undercoolings; (ii) the transition proceeds sharply;
(iii) the transition proceeds with the finite fixed cooling
rate, i.e., with fixed undercooling and finite solidification
velocity.

Analyzing theoretical models of rapid eutectic growth
[3,4], one can note that they predict the transition to the
completely diffusionless solidification only with an infinite
growth velocity V of � and � phases. This fact follows
from the description of solute transport using Fick’s model
of diffusion, which assumes infinite speed VD for solute
diffusion propagation.

A model which extends a description of rapid crystal
growth to the case of the finite diffusion speed has been
formulated using local nonequilibrium conditions at the
solid-liquid interface and in the solute diffusion field
[10,11]. Quantitative analysis showed that the transition
to diffusionless growth proceeds abruptly and with the
finite interface velocity V equal to the solute diffusion
speed VD in bulk liquid [11,12]. Consequently, the local
nonequilibrium model qualitatively satisfies the above
points (ii) and (iii) for abrupt transition to diffusionless
growth at the finite solidification velocity. In this Letter, we
show that, in comparison with the model including local
nonequilibrium on the interface only [3,4], the further
extension of the model to the case of local nonequilibrium
in a solute diffusion field allows us to describe a transition
from eutectic growth to an apparently homogeneous struc-
ture in eutectic systems. In comparison with the problem of
a single-phase solidification [10], we describe the diffusion
problem of rapid two-phase solidification in an example of
lamellar coupled growth.

Consider solidification of a binary system consisting of
the atoms A and B and having the eutectic point with
equilibrium temperature Te and concentration Ce.
Assume that undercooling �T below the eutectic point in
the liquid provides a motion of the interface with the
velocity V comparable with the solute diffusive speed
VD � �D=�D�1=2 in bulk liquid, where D is the diffusion
constant and �D is the time for relaxation of solute diffu-
sion flux to its steady-state value. We neglect the diffusion
in � and � phases which have the form of the lamellar
eutectic microstructure. Therefore, we accept one-sided
model solidification in which a steady state occurs with
the solid concentration Cs equal to the initial composition
C0 [10]. For further simplification, a kinetic phase diagram
of phase state is taken such that the solute partitioning for
both phases is described by the functions k� � k� � k �
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Cs=C, where k is the solute partitioning coefficient depen-
dent on velocity V and C is the concentration of B atoms as
a solute in the liquid. Then, for a steady-state regime, the
2D equation for the solute diffusion is given by [11,13]
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Here �C1 is the difference between initial concentration
C0 and the eutectic concentration Ce, C�l� and C�l� are the
concentrations on the � phase and � phase in the liquid,
respectively, S� and S� are half the interlamellar spacing
for each phase, and � � 2�S� � S�� is the lamellar
spacing.

For solution of Eq. (1), we introduce the notation
~C�x; z� � C�x; z� 	 C0 and apply the method of separation
of variables: ~C�x; z� � P�x�Q�z�. Substituting this notation
into Eq. (1), one gets
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where � is the separation variable.
The first equation
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whereQ1 andQ2 are the integration constants. Solution (8) must be limited at z! 1 and it must be real for any value of�.
Then it gives the following particular solution:
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(9)
Note that, if the interface velocity V is equal to or greater
than the diffusion speed, V � VD, both constants of inte-
gration in the general solution (8) have zero value: Q1 � 0
due to limited solution far from the interface with z! 1
and one has Q2 � 0 for obtaining a real solution for Q�z�.
Therefore, in particular, from solution (9) we have two
radically different kinds of regimes: a regime with V < VD
and a regime with V � VD.

The second equation

d2P

dx2
� P� � 0 (10)

from Eq. (6) has the following solution:

P�x� � P1 cos��1=2x� � P2 sin��1=2x�: (11)
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Using boundary condition (3), one can obtain integra-
tion constants P1 and P2 in Eq. (11). First, P2 � 0 from
the condition �dP=dx�x�0 � 0. Second, with P1 � 0 one
has from condition �dP=dx�x�S��S� � 0 that �n �
�n�=�S� � S���2, where n belongs to a set of integer
numbers. Consequently, solution (11) takes the following
particular form:

P�x� � Pn cosbnx; bn �
n�

S� � S�
: (12)

Now taking Eqs. (9) and (12), using absolute values for
concentration, and taking condition (2), the following so-
lution of Eq. (1) is obtained:
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In Eq. (13), the Fourier coefficients can be found from balances (4) and (5). Integration along the interfaces of the � phase
and � phase is given by
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where C�l� is the interfacial concentration given by Eq. (13)
for V < VD and z � 0. After integration, one gets
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where it has been taken into account that, in a steady-state
regime of solidification, solid concentration is defined as
the initial concentration C0; therefore, it has been taken
C�l� � C0=k�V�.

A comparison with previous solutions may be outlined.
First, the solution given by Eqs. (13), (14), and (16) shows
that, in contrast with the classic solution of Jackson and
Hunt [1], the term with V=2D is not negligible in compari-
son with bn given by Eq. (12) for exponent (14). In the
present description, the term V=�2D�1	 V2=V2
D�
 in the

exponent becomes a valuable function of V, particularly
with V � VD. Second, solutions (13), (14), and (16) trans-
form into the previous solution [3] for local equilibrium
diffusion in the limit VD ! 1. Third, excluding periodic-
ity, i.e., when bn � 0, solution (13) describes concentra-
tional profiles for a single-phase solidification with finite
solute diffusion speed VD [10,13].

As follows from Eq. (13) and qualitatively shown in
Fig. 2, diffusion ahead of the solid-liquid interface is fin-
ishing and diffusionless growth without solute redistribu-
tion begins at the critical velocity V�VD. Miroshnichenko
[7] provided an experimental diagram ‘‘maximal under-
cooling �T prior to solidification’’ as a function of ‘‘cool-
ing rate @T=@t’’ in small samples of a number of aluminum
alloys (including the Al-Mg alloy discussed in Fig. 1). He
showed that, for samples with linear size of a few milli-
meters or centimeters, the cooling rates of the order of
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FIG. 2. Concentrational profiles C�x; z� predicted by solu-
tions (13)–(16). The dashed line shows initial (nominal) con-
centration C0. (a),(b) Transverse solute distribution along the x
axis. (c),(d) Longitudinal solute distribution along the z axis.
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105–106 K=s provide undercooling of 150–300 K. Assum-
ing the sample size as l � �1–3� � 10	3 m and isotherm
associated with the growth interface, one may evaluate the
growth velocity as V��@T=@t��l=�T�� �105–106��
�1–3��10	3=�150–300��1–10 m=s. This numeric evalu-
ation shows that the interface can move with the velocity of
the order of the diffusion speed V � VD � 1–10 m=s [10–
12]. Therefore, one may assume that the critical velocity
V � VD is accessible and diffusionless solidification for
eutectic systems is possible.

With V � VD, atoms have no time to move out of the
interface due to atomic diffusion jumps. They become
‘‘frozen’’ in comparison with intensive attachment of
atoms to the interface, which provides crystal growth. In
such a case, transformation can be considered as diffusion-
less transformation and, following solution (13), a suppres-
sion of eutectic precipitation and growth occurs. Even
though the initial content of the liquid is equal to the
eutectic concentration, solidification with V � VD pro-
ceeds without eutectic decomposition, and a chemically
homogeneous solid grows with an initial content C � C0 .

As a final note, solution (13) has a general meaning: A
source of concentrational inhomogeneities, i.e., a solid-
liquid interface, moving at a velocity V equal to or higher
than the maximum speed VD of these inhomogeneities
cannot disturb the medium ahead of itself. With regard to
the considered growth of lamellar eutectic microstructure,
solution (13) proves the existence of the experimentally
observed transition (i) from eutectic microstructure to
homogeneous solid solution of initial concentration that
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occurs (iii) at a fixed solidification velocity V � VD. With
regard to the above point (ii), one may note that the
solution (13) gives two different regimes for V < VD and
V � VD. The latter one satisfies boundary conditions (4)
and (5) only for zero diffusion fluxes: J� � V�C�l� 	
C�s�� � 0 and J� � V�C�l� 	 C

�
s�� � 0. It requires the con-

ditions C�s�=C�l� � 1, C�s�=C
�
l� � 1, and k�V � VD� � 1,

which are main features of the diffusionless process. These
conditions have to lead to infinite interlamellar spacing.
Indeed, as has been shown in Ref. [3], � / k�1	 k�	1 with
large V. At k�V � VD� � 1, one gets �! 1, which means
infinite increasing of interlamellar spacing and transition to
the only phase [14]. Therefore, for further proving exis-
tence of the abrupt transition (ii), it is necessary to analyze
the self-consistent model of eutectic solidification which
must take into account nonequilibrium solute trapping
[described by a specific form of nonequilibrium solute
partitioning function k�V�] and slopes of liquidus and
solidus in the kinetic phase diagram. In such a case, one
may expect to describe the abrupt transition from the
diffusion-limited growth to diffusionless growth at V �
VD as has been shown for dendritic growth [11] and growth
of a planar interface [12].
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