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Transport in Weighted Networks: Partition into Superhighways and Roads
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Transport in weighted networks is dominated by the minimum spanning tree (MST), the tree connecting
all nodes with the minimum total weight. We find that the MST can be partitioned into two distinct
components, having significantly different transport properties, characterized by centrality—the number
of times a node (or link) is used by transport paths. One component, superhighways, is the infinite
incipient percolation cluster, for which we find that nodes (or links) with high centrality dominate. For the
other component, roads, which includes the remaining nodes, low centrality nodes dominate. We find also
that the distribution of the centrality for the infinite incipient percolation cluster satisfies a power law, with
an exponent smaller than that for the entire MST. The significance of this finding is that one can improve
significantly the global transport by improving a tiny fraction of the network, the superhighways.
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Recently, much attention has been focused on the topic
of complex networks, which characterize many natural and
manmade systems, such as the Internet, airline transport
system, power grid infrastructures, and the World Wide
Web [1–3]. Besides the static properties of complex net-
works, dynamical phenomena such as transport in net-
works are of vital importance from both theoretical and
practical perspectives. Recently, much effort has been
focused on weighted networks [4,5], where each link or
node is associated with a weight. Weighted networks yield
a more realistic description of real networks. For example,
the cable links between computers in the Internet network
have different weights, representing their capacities or
bandwidths.

In weighted networks, the minimum spanning tree
(MST) is a tree, including all of the nodes but only a subset
of the links, which has the minimum total weight out of all
possible trees that span the entire network. Also, the MST
is the union of all ‘‘strong disorder’’ optimal paths between
any two nodes [6–12]. The MST which plays a major role
for transport is widely used in different fields, such as the
design and operation of communication networks, the
traveling salesman problem, the protein interaction prob-
lem, optimal traffic flow, and economic networks [5,13–
18].

An important quantity that characterizes transport in
networks is the betweenness centrality C, which is the
number of times a node (or link) is used by the set of all
shortest paths between all pairs of nodes [19–21]. For
simplicity, we call the ‘‘betweenness centrality’’ here
‘‘centrality’’ and we use the notation ‘‘nodes’’ but similar
results have been obtained for links. The centrality C
quantifies the ‘‘importance’’ of a node for transport in the
network. Moreover, identifying the nodes with high C
enables us, as shown below, to improve their transport
capacity and thus improve the global transport in the net-
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work. The probability density function (PDF) of C was
studied on the MST for both scale-free (SF) [22] and
Erdős-Rényi (ER) [23] networks and found to satisfy a
power law

P MST�C� � C��MST ; (1)

with �MST close to 2 [21,24].
Here we show that a subnetwork of the MST [25], the

infinite incipient percolation cluster (IIC), has a signifi-
cantly higher average C than the entire MST—i.e., the set
of nodes inside the IIC is typically used by transport paths
more often than other nodes in the MST. In this sense, the
IIC can be viewed as a set of superhighways (SHW) in the
MST. The nodes on the MST which are not in the IIC are
called roads, due to their analogy with roads which are not
superhighways (usually used by local residents). We dem-
onstrate the impact of this finding by showing that improv-
ing the capacity of the superhighways (IIC) is surprisingly
a better strategy to enhance global transport compared to
improving the same number of links of the highest C in the
MST, although they have higher C [26]. This counterintui-
tive result shows the advantage of identifying the IIC
subsystem, which is very small compared to the full net-
work [27]. Our results are based on extensive numerical
studies for centrality of the IIC and comparison with the
centrality of the entire MST. We study ER, SF, and square
lattice networks.

To generate a ER network of size N with average degree
hki, we pick at random a pair of nodes from all possible
N�N � 1�=2 pairs, link this pair, and continue this process
until we have exactly hkiN=2 edges. We disallow multiple
connections between two nodes and self-loops in a single
node. To construct SF networks with a prescribed power
law distribution P �k� � k��, with k � kmin [22], we use
the Molloy-Reed algorithm [30]. We assign to each node i
a random number ki of links drawn from this power law
2-1 © 2006 The American Physical Society
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FIG. 1. The PDF of the centrality of nodes for (a) an ER graph
with hki � 4, (b) a SF with � � 4:5, (c) a SF with � � 3:5, and
(d) a 90� 90 square lattice. For ER and SF N � 8192, and for
the square lattice N � 8100. We analyze 104 realizations. For
each graph, the solid circles show P IIC�C�; the unfilled circles
show PMST�C�.

TABLE I. Results for the IIC and the MST.

ER SF (� � 4:5) SF (� � 3:5) Square lattice

�IIC 1.2 1.2 1.2 1.25
�MST 1.6 1.7 1.7 1.32
�opt 1=3 1=3 0.2 0.61
hui 0.29 0.20 0.13 0.64
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distribution. Then we choose a node i and connect each of
its ki links with randomly selected ki different nodes.

To construct a weighted network, we next assign a
weight wi to each link from a uniform distribution between
0 and 1. The MST is obtained from the weighted network
using Prim’s algorithm [31]. We start from any node in the
largest connected component of the network and grow a
treelike cluster to the nearest neighbor with the minimum
weight until the MST includes all the nodes of the largest
connected component. Once the MST is built, we compute
the value of C of each node by counting the number of
paths between all possible pairs passing through that node.
We normalize C by the total number of pairs in the MST
N�N � 1�=2, which ensures that C is between 0 and 1 [32].

To find the IIC of ER and SF networks, we start with the
fully connected network and remove links in descending
order of their weights. After each removal of a link, we
calculate � � hk2i=hki, which decreases with link remov-
als. When � < 2, we stop the process because, at this point,
the largest remaining component is the IIC [33]. For the
two-dimensional (2D) square lattice, we cut the links in
descending order of their weights until we reach the per-
colation threshold pc ( � 0:5). At that point, the largest
remaining component is the IIC [29].

To quantitatively study the centrality of the nodes in the
IIC, we calculate the PDF P IIC�C� of C. In Fig. 1, we show
for nodes that for all three cases studied, ER, SF, and
square lattice networks, P IIC�C� satisfies a power law

P IIC�C� � C
��IIC ; (2)

where

�IIC �

�
1:2 	ER; SF

1:25 	square lattice
:

(3)

Moreover, from Fig. 1, we find that �IIC < �MST, implying
a larger probability to find a larger value of C in the IIC
compared to the entire MST. Our values for �MST are
consistent with those found in Ref. [24]. We obtain similar
results for the centrality of the links. Our results thus show
that the IIC is like a network of superhighways inside the
MST. When we analyze centrality for the entire MST, the
effect of the high C of the IIC is not seen, since the IIC is
only a small fraction of the MST. Our results are summa-
rized in Table I.

To further demonstrate the significance of the IIC, we
compute for each realization of the network the average C
over all nodes hCi. In Fig. 2, we show the histograms of hCi
for both the IIC and for the other nodes on the MST. We see
that the nodes on the IIC have a much larger hCi than the
other nodes of the MST.

Figure 3 shows a schematic plot of the SHW inside the
MST and demonstrates its use by the path between pairs of
nodes. The MST is the ‘‘skeleton’’ inside the network,
which plays a key role in transport between the nodes.
However, the IIC in the MST is like the ‘‘spine in the
skeleton,’’ which plays the role of the superhighways in-
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side a road transportation system. A car can drive from the
entry node A on roads until it reaches a superhighway and
finds the exit which is closest to the exit node B. Thus,
those nodes which are far from each other in the MST
should use the IIC superhighways more than those nodes
which are close to each other. In order to demonstrate this,
we compute f, the average fraction of pairs of nodes using
the IIC, as a function of ‘MST, the distance between a pair
of nodes on the MST (Fig. 4). We see that f increases and
approaches 1 as ‘MST grows. We also show that f scales as
‘MST=N�opt for different system sizes, where �opt is the
percolation connectedness exponent [9,10].

The next question is how much the IIC is used in trans-
port on the MST. We define the IIC superhighway usage

u �
‘IIC

‘MST
; (4)

where ‘IIC is the number of the links in a given path of
length ‘MST belonging to the IIC superhighways. The
average usage hui quantifies how much the IIC is used by
the transport between all pairs of nodes. In Fig. 5(a), we
show hui as a function of the system size N. Our results
suggest that hui approaches a constant value and becomes
independent of N for large N. This is surprising, since the
average value of the ratio between the number of nodes on
2-2
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FIG. 4. The average fraction hfi of pairs using the SHW, as a
function of ‘MST, the distance on the MST. (a) An ER graph with
hki � 4, (b) a SF with � � 4:5, (c) a SF with � � 3:5, and (d) a
square lattice. For ER and SF: (�) N � 1024 and (�) N � 2048
with 104 realizations. For a square lattice: (�) N � 1024 and
(�) N � 2500 with 103 realizations. The x axis is rescaled by
N�opt , where �opt � 1=3 for ER and for SF with � > 4, and
�opt � ��� 3�=��� 1� for SF networks with 3< �< 4 [9]. For
the L� L square lattice, ‘MST � L

dopt , and since L2 � N, �opt �

dopt=2 � 0:61 [7,8].
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FIG. 2. The normalized PDF for superhighway and roads of
hCi, the C averaged over all nodes in one realization. (a) An ER
network, (b) a SF network with � � 4:5, (c) a SF network with
� � 3:5, and (d) a square lattice network. To make each histo-
gram, we analyze 1000 network configurations.
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the IIC and on the MST hNIIC=NMSTi approaches zero as
N ! 1 [27], showing that, although the IIC contains only
a tiny fraction of the nodes in the entire network, its usage
for the transport in the entire network is constant. We find
that hui � 0:3 for ER networks, hui � 0:2 for SF networks
with � � 4:5, and hui � 0:64 for the square lattice. The
reason why hui is not close to 1.0 is that, in addition to the
IIC, the optimal path passes through other percolation
clusters, such as the second largest and the third largest
percolation clusters. In Fig. 5, we also show for ER net-
works the average usage of the two largest and the three
largest percolation clusters for a path on the MST, and we
see that the average usage increases significantly and is
also independent of N. However, the number of clusters
A

B

C

MST

roadssmall percolation
clusters

(Superhighways)
IIC

FIG. 3. Schematic graph of the network of connected super-
highways (heavy lines) inside the MST (shaded area). A, B, and
C are examples of possible entry and exit nodes, which connect
to the network of superhighways by ‘‘roads’’ (thin lines). The
middle size lines indicate other percolation clusters with much a
smaller size compared to the IIC.
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used by a path on MST is relatively small and proportional
to lnN [34], suggesting that the path on the MST uses only
a few percolation clusters and a few jumps between them
(� lnN) in order to get from an entry node to an exit node
on the network. When N ! 1, the average usage of all
percolation clusters should approach 1.
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FIG. 5. (a) The average usage hui � h‘IIC=‘MSTi for different
networks, as a function of the number of nodes N � (ER with
hki � 4), � (SF with � � 4:5), � (SF with � � 3:5), 4 (L� L
square lattice). The symbols (�) and (�) represent the average
usage for ER with hki � 4 when the two largest percolation
clusters and the three largest percolation clusters are taken into
account, respectively. (b) The ratio between the flow using
strategy I, FsI, and that using strategy II, FsII, as a function of
the factor of improving conductivity or capacity. The inset is the
ratio between the flow using strategy I and the flow in the
original network F0. The data are all for ER networks with N �
2048, hki � 4, and n � 50 (�), n � 250 (�), and n � 500 (�).
The unfilled symbols are for current flow and the solid symbols
are for maximum flow.
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Can we use the above results to improve the transport in
networks? It is clear that, by improving the capacity or
conductivity of the highest C links, one can improve the
transport [see Fig. 5(b) inset]. We hypothesize that im-
proving the IIC links (strategy I), which represent the
superhighways, is more effective than improving the
same number of links with the highest C in the MST
(strategy II), although they have higher centrality [26].
To test the hypothesis, we study two transport problems:
(i) current flow in random resistor networks, where each
link of the network represents a resistor, and (ii) the maxi-
mum flow problem well known in computer science [35].
We assign to each link of the network a resistance or
capacity eax, where x is an uniform random number be-
tween 0 and 1, with a � 40. The value of a is chosen so as
to have a broad distribution of disorder so that the MST
carries most of the flow [10,34]. We randomly choose n
pairs of nodes as sources and other n nodes as sinks and
compute flow between them. We compare the transport by
improving the conductance or capacity of the links on the
IIC (strategy I) with that by improving the same number of
links but those with the highest C in the MST (strategy II).
Since the two sets are not the same and, therefore, higher
centrality links will be improved in II [26], it is tempting to
suggest that the better strategy to improve global flow
would be strategy II. However, here we demonstrate using
ER networks as an example that counterintuitively
strategy I is better. We also find similar improvements of
strategy I compared to strategy II for SF networks with
� � 3:5. In Fig. 5(b), we compute the ratio between the
flow using strategy I (FsI) and the flow using strategy II
(FsII) as a function of the factor of improving conductivity
or capacity of the links. The figure clearly shows that
strategy I is better than strategy II. Since the number of
links in the IIC is relatively very small compared to the
number of links in the whole network [27], it could be a
very efficient strategy.

In summary, we find that the centrality of the IIC for
transport in networks is significantly larger than the cen-
trality of the other nodes in the MST. Thus, the IIC is a key
component for transport in the MST. We demonstrate that
improving the capacity or conductance of the links in the
IIC is a useful strategy to improve transport.
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