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Synchronization of Eukaryotic Cells by Periodic Forcing
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We study a cell population described by a minimal mathematical model of the eukaryotic cell cycle
subject to periodic forcing that simultaneously perturbs the dynamics of the cell cycle engine and cell
growth, and we show that the population can be synchronized in a mode-locked regime. By simplifying
the model to two variables, for the phase of cell cycle progression and the mass of the cell, we calculate
the Lyapunov exponents to obtain the parameter window for synchronization. We also discuss the effects
of intrinsic mitotic fluctuations, asymmetric division, and weak mutual coupling on the pace of
synchronization.
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FIG. 1. Core module of cell cycle regulation in budding yeast
[4]. X stands for the cyclin dependent kinase Cdc28/Clb2, Y
stands for the active form of enzyme Cdh1, Z stands for enzyme
Cdc20, and W stands for the active form of the transcription
factor, Mcm1. ‘‘*’’ marks inactive forms. By dotted line we
indicate regulations involving enzymatic reactions.
Synchronization of rhythmic processes is a fundamental
problem in science with applications ranging from engi-
neering to medicine [1]. A major rhythmic process in the
physiology of a cell is the cell cycle, by which a cell repli-
cates all its components and divides into two daughter
cells. In modern cell cycle research, it is often required to
generate cultures that are growing synchronously. How-
ever, it is frequently debated whether some common ex-
perimental techniques truly synchronize all culture [2,3].
Because comprehensive mathematical models consistent
with available experimental data on the eukaroytic cell
cycle have been developed only recently [4,5], there are
no theoretical studies to shed light on these debates. These
models, describing progression through DNA synthesis-
mitosis-cell division and cell growth, are well understood
qualitatively by bifurcation analysis [6,7]. Thus, an inter-
esting and important theoretical problem is synchroniza-
tion of cells whose individual dynamics are governed by a
reasonable model of the eukaroytic cell cycle.

A population of deterministic oscillators can be synchro-
nized either by external forcing or by mutual coupling. The
former method is often used in cell cycle research, by
perturbing a cell culture’s environmental parameters,
such as heat [8], light [9], hypertonic stress [10], and
nutrition [11]. Little is known about synchronization of a
cell population by mutual coupling between the cells. The
molecular mechanisms of downstream processes—cell to
cell signaling, growth factor sensing, signal transduction,
etc.—are not known well enough to integrate all the events
from cell communication to cell division in a realistic
mathematical model. In diploid yeast cultures, mutual
coupling between cells is negligible and if nutrition of
the culture remains sufficient, they proliferate indepen-
dently for many generations. A population of such cells
can be synchronized by periodic forcing, and the pace of
synchronization can be studied by means of mathematical
modeling.
06=96(14)=148102(4)$23.00 14810
Let us consider the wiring diagram shown in Fig. 1,
which describes the core of the cell cycle engine regulating
the eukaryotic cell cycle. The following minimal model
can be derived from Fig. 1,

dX
dt
� m�k1 � k2W0� � �k3 � k4Y0 � k5Z�X; (1)

dZ
dt
� �k10 � k11X� � k12Z; (2)

dm
dt
� �m; (3)

where m is the cell’s mass. Equation (3) must be supple-
mented by the cell division rule,m ���! �m, where 0< �<
1, which divides the cell whenever the activity of the cyclin
dependent kinase, X, drops below a threshold Xthr. The
activities of components Y and W are derived from quasi-
stationary assumptions [12]: W0 � G�X;P; J; J� and Y0 �
G�k6 � k7Z; k8m� k9X; J; J�. The Goldbeter-Koshland
function [13] is G�a; b; c; d� � 2ad
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More detailed studies of Eqs. (1)–(3), including phase
portraits and bifurcation diagrams are presented elsewhere
[12]. In Fig. 2 we show a typical simulation of Eqs. (1)–(3).
At small values of mass,m, the ratio, XZ , is small because X
is small in the G1 phase of the cell cycle. As the cell mass
grows, there are transitions through cell cycle phases
S=G2=M. When the level of X drops below the threshold,
Xthr, mass is divided (m � �m) and the system reenters
into the G1 phase.

Different methods have been used for achieving syn-
chronized cell populations, including pulse treatment with
toxic drugs, physical separation of cells by size, perturba-
tion of temperature and nutrient conditions, and genetic
restriction [14,15]. Some of these methods simultaneously
perturb both the cell cycle engine and mass growth [12].
For example, suppose the cyclin protein Clb2 (X in our
model) is transgenically expressed from a GAL-CLB2 gene
by shifting the culture from glucose medium to galactose
medium and back to glucose medium. Mathematically, this
treatment perturbs both Eqs. (1) and (2) and Eq. (3). With
such experimental protocols in mind, here we consider
periodic forcing that modulates the synthesis rate of a
single protein (k10 ! k10 � �k10, where �k10 � k10A�1�
sin�ft��), and the mass growth rate (�m! �m��B�1�
sin�ft��).

Experimentally, as an asynchronous population of cells
has a broad distribution of cell mass, it is difficult to narrow
the mass distribution by treating all cells equally. This is
one of the arguments of Cooper, who thinks that whole-
culture methods cannot truly synchronize cell populations
[2]. Although cells may be aligned at a certain phase in the
cell cycle, their masses are still widely distributed and so
the cells are in very different physiological states, accord-
ing to Cooper. This argument also can be seen from
Eqs. (1)–(3) where the growth process is decoupled from
the dynamics of cell cycle proteins; therefore, even if cell
cycle phases of different cells are synchronized by whole-
culture treatments, the mass distribution remains broad and
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FIG. 2. Cell cycle dynamics in Eqs. (1)–(3). Arrows mark the
pace of cell cycle progression. G1;S;G2;M refer to the four
standard phases of the eukaryotic cell cycle. Cell birth and
division are denoted by  0 and  n. Parameters in units of
min�1: k1 � 0:002, k2 � 0:0795, k3 � 0:01, k4 � 2, k5 �
0:05, k6 � 0:04, k7 � 1:5, k8 � 0:19, k9 � 0:64, k10 � 0:0025,
k11 � 0:07, k12 � 0:08, � � 0:005 776. Other parameters: P �
0:15, J � 0:05, Xthr � 0:05, and � � 0:5.
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unsynchronized. However, in the mode-locked regime of
the forced cell cycle, the mass distribution narrows, as cells
divide only at certain mass values [12]. Mode locking also
constrains the dynamics of proteins involved in cell cycle
regulation, which attain only certain fixed values at divi-
sions, regardless of their initial levels. As a result, forcing
leads to synchronization of noninteracting cells described
by the eukaryotic cell cycle model. Figure 3 shows cell
generations from 128 cells described by Eqs. (1)–(3) with
the forcing terms as described above, and with random
initial values for X, Z, andm. In Fig. 3(a), the increase ofN
(the number of cells) is irregular; therefore, the first gen-
erations of cells are not synchronized. But, in later gener-
ations, N doubles within short time intervals, indicating an
onset of synchronization, Fig. 3(b).

The two principal processes in our model are cell cycle
progression Eqs. (1) and (2), and cell growth Eq. (3). We
propose to reduce Eqs. (1) and (2) to a single variable, �,
for cell cycle phase, d�dt � ~�m, with cell division at � �
�thr and cell birth at� � mbirth. In the presence of periodic
forcing of both variables, our model is

dm
dt
� �m��B�1� sin�ft��; (4)

d�
dt
� ~�m��A�1� sin�ft� ���: (5)

Equations (4) and (5) are subject to the following resets:
m! �m and �! m if � � �thr. Parameter � character-
izes a phase shift in forcing. We numerically confirmed
that Eqs. (1)–(5) display qualitatively similar dynamics.

Because they involve reset dynamics associated with
cell division [5,16,17], cell cycle models are quite compli-
cated for theoretical and numerical analyses. The advan-
tage of the toy model, Eqs. (4) and (5), is that it allows
explicit calculations of the Lyapunov exponents [18] which
are given by �1;2 � limn!0

1
2n ln�!n

1;2�, where n is number
of cell divisions, and !1;2 are the eigenvalues of the sym-
metrical matrix MT

nMn. The superscript T denotes matrix
transposition andM1 is set to the identity matrix. For n > 1
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FIG. 3. Onset of synchronization in a periodically forced
population with cells described by Eqs. (1)–(3). We monitor
number of cells, N, generating initially from 128 cells. The
dotted lines show perfect cell synchrony. (a) First generations
are not synchronized. (b) Onset of synchronization. A � B �
0:52 and other parameters are the same as in Fig. 2.
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the M matrix can be computed as Mn�1 � mnMn, where
mn � Dtn�1�tnCtn . The Dt matrix characterizes the dy-
namics of small perturbations, �m�t� and ���t�, dur-
ing continuous time evolution between cell birth and
division. For Eqs. (4) and (5), Dt is a vector given by
DT
t � fexp��t�; exp� ~�t�g. Ct matrix characterizes dynam-

ics of the small perturbations at cell division and is given

by Ct � �ff1; ��
�1�1� ~A
~�m� ~A

g; f1; � ~����m���
�1�1� ~A

~�m� ~A
gg, where ~A �

�A�1� sin�ft��. For simplicity we assume A � B and
� � 0 in Eqs. (4) and (5).

The first two rows in Fig. 4 show distributions of inter-
division time and mass at division upon variations of the
amplitude of the periodic forcing in Eqs. (4) and (5).
Continuous spectra show quasiperiodic motions, whereas
discrete spectra show mode-locked solutions. The third
row in Fig. 4 shows the corresponding Lyapunov exponents
which are negative when the system is in a mode-locked
regime.

Since cells are uncoupled, we need consider only two
cells to characterize synchronized motions. Thus,
we introduce a quantity, Rsynch � lnj ��t�

��0� j, where ��t� �
��������������������������������������������������������������������������
�m1�t� �m2�t��2 � ��1�t� ��2�t��2

p
. Dotted lines in

Fig. 5 show the dynamics of Rsynch when the forcing
amplitude A is outside of the mode locking window. The
solid lines in Fig. 5 show the rate of the synchronization
when A � 0:77. Notable synchrony (�< 2:5� 10�3) is
achieved at Tsynch 	 22 000 min (	200 generations or
	17 days). For different initial values of �0, we numeri-
cally found similar times for �< 2:5� 10�3.

If we take into account random processes inherent in
biomolecular networks, the mode locking window might
shift or even disappear as the fluctuations become stronger.
Synchronization of the cell cycle in Eqs. (4) and (5) is
sensitive to fluctuations of parameters (� and �thr) defin-
ing the resonance condition. Let �thr be a random number
with the mean � and the standard deviation �. Figure 6
shows the order parameter calculated for two descendants
of two daughter cells selected in each generation.
Synchrony (at � � 0) is degraded as � increases, but
some degree of synchrony still can be detected if � is not
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FIG. 4. Mode locking in Eqs. (4) and (5). Parameters are ~� �
0:9�, �thr � �, and f � f0: 2

3 , where f0 �
2�
T0

; � � 0:005 776

and T0 �
Ln2
� .
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too large. On the contrary, stochastic synchronization is
also possible; a system desynchronized at � � 0 may
obtain a certain degree of synchrony when �1 <�<�2

(see A � 0:74 in Fig. 6).
We assume that cells divide symmetrically (� � 0:5), as

fission yeast cells do. However, budding yeast cells divide
asymmetrically [19]. For the case of asymmetric division,
our simulations show that periodic forcing at fixed A and f
fails to synchronize the whole population if the asymmetry
of division is too great. However, for appropriate choices of
A and f, it is always possible to enforce mode locking for
selected cells. For example, in our simulations, after sev-
eral generations in the mode-locked regime, the daughter
cells become synchronized. Also, by alternating forcing
parameters, A and f, from the values selectively synchro-
nizing mother or daughter cells, a certain degree of syn-
chrony in the whole culture can be achieved.

We neglect in our models the phenomenon of aging—a
physiological feature of budding yeast cells that compli-
cates the production of synchronous cultures. Even if a
culture can be synchronized with respect to position in the
DNA replication-mitosis-division cycle, the cells within
the population will be nonuniform with respect to age
and state of senescence. Fortunately, the oldest and most
senescent cells are also the rarest, because they are diluted
out by the more numerous younger cells in a population.
Therefore, their effects on the average physiological state
of the culture may be negligible.

Though we ignore mutual coupling between the cells, a
cell in a culture senses its environment and exchanges
information with other cells, for instance, through growth
factors—rapidly diffusing molecules. Growth factors par-
ticipate indirectly in cell cycle regulation, by interacting
with proteins that activate or deactivate key cell cycle
proteins [5]. Mathematically, accounting of growth factors
in cell cycle dynamics will lead to a reaction diffusion
model which under certain conditions can be approximated
by a simpler model similar to Eqs. (4) and (5) that can
describe qualitative dynamics of realistic models [1,20].
Thus, the simplest way to account for the effects of growth
factors in the toy model is by coupling the phase variables,
i.e., by introducing a coupling function � in the right-hand
side of Eq. (5). If coupling is weak, the coupling function
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FIG. 5. Time evolution of the order parameter. Solid lines: A �
0:77, dotted lines: A � 0:7. Parameters are the same as in Fig. 4.
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FIG. 6. Synchronization in the presence of fluctuations. Rsynch

is computed by comparing two daughter cells in each generation.
We average Rsynch over time and over different initial conditions.
Parameters are the same as in Fig. 4.
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for the phase of a cell at the spatial location x can be given
by ��x� �

R
exp��	jx� yj� sin�x� y� 
�dy. Because

the time scale of diffusive agents is small, the coupling
range of � can be global (	 � 0) or nonlocal (	
 1)
[21,22]. Our simulations show that in the absence of forc-
ing, attractive coupling can synchronize phases, but not the
mass distribution as Cooper argued [2]. Thus, forcing of
the growth dynamics is essential in synchronization, even
when the phases are under global, attractive coupling.
When cells are coupled, Tsynch is only few hours. If the
coupling is repulsive and sufficiently strong, the cells are
desynchronized even in a mode locking regime. An inter-
esting case for nonlocal coupling is that, in some range of
attractive coupling, cells can be in a chimera state, where
cells split into two domains, synchronized and desynchron-
ized [23].

The dynamics of cell cycle and cell growth can be
modulated experimentally. Indeed, Cross and Siggia dis-
cussed periodic forcing of the dynamics of genes and
proteins involved in cell cycle regulation of budding yeast
and suggested ways to enforce mode locking experimen-
tally [24]. As for the perturbations of mass growth, recent
experiments indicate that it is possible to modulate cell
mass by heat shocks [25] or by perturbations that change
the uptake through cell membrane [26]. What can be
essential in forced cell synchronization experiments is a
coordination of modulations of both growth and cell cycle
progression.

In conclusion, we have shown that a cell population
described by a model of the eukaryotic cell cycle can be
synchronized by periodic forcing that simultaneously mod-
ulates the dynamics of the cell cycle engine and of mass
14810
growth. The degree of synchrony is higher if the cells
divide symmetrically and if fluctuations are not too strong.
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