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Spin-Orbital Entanglement and Violation of the Goodenough-Kanamori Rules
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We point out that large composite spin-orbital fluctuations in Mott insulators with t2g orbital
degeneracy are a manifestation of quantum entanglement of spin and orbital variables. This results in a
dynamical nature of the spin superexchange interactions, which fluctuate over positive and negative
values, and leads to an apparent violation of the Goodenough-Kanamori rules.
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Since the 1960’s the magnetism of correlated Mott in-
sulators like transition-metal oxides has been understood
by means of the Goodenough-Kanamori (GK) rules [1,2].
These state that if there is large overlap between partly
occupied orbitals at two magnetic ions, the superexchange
interaction between them is strongly antiferromagnetic
(AF) because of the Pauli principle, whereas overlap be-
tween partly occupied and unoccupied orbitals gives
weakly ferromagnetic (FM) interaction due to Hund’s
exchange [3]. In the archetypical case of 180� bonds
through a single ligand ion this translates into a comple-
mentary interdependence between spin order and orbital
order [4]: ferro-orbital (FO) order supports strong AF spin
order, while alternating orbital (AO) order supports weak
FM spin order. The canonical example of this behavior is
KCuF3, where weak FM (positive) spin correlations in the
ab planes and strong AF (negative) correlations along the c
axis are accompanied by AO order in the ab planes and FO
order along the c axis.

The GK rules (and extensions thereof [5]) have been
extremely successful in explaining the magnetic structure
in a wide range of materials. This may seem surprising
because they presuppose that the orbital occupation is
static, whereas in recent years it has become clear that if
partly filled orbitals are degenerate, both spin and orbital
degrees of freedom should be considered as dynamic
quantum variables and be described by so-called spin-
orbital models [6,7]. The GK rules work that well because
in many compounds a structural phase transition, driven by
the Jahn-Teller (JT) coupling of degenerate orbitals to the
lattice, lifts the degeneracy and fixes the orbital occupation
well above the magnetic transition. This happens typically
for electrons in eg orbitals where large JT distortions favor
C-type orbital order, as in KCuF3. However, for t2g orbitals
the JT coupling is rather weak, and recent experiments in
pseudocubic perovskite titanates [8] and vanadates [9] in-
deed indicate that the relevant orbitals fluctuate, and the
conditions for applying the GK rules are not satisfied.

In this Letter we investigate the magnetism of correlated
insulators in the case where classical static orbital order is
06=96(14)=147205(4)$23.00 14720
absent. We will show that spins and orbitals then get
entangled due to composite spin-orbital quantum fluctua-
tions and that the familiar static GK rules are violated to the
extent that even the signs of the magnetic interactions may
fluctuate in time. To demonstrate this general feature in the
most transparent way, we consider three different spin-
orbital models for correlated insulators with 180� perov-
skite bonds between d1, d2, and d9 ionic configurations,
respectively, where the GK rules definitely predict com-
plementary signs of spin and orbital intersite correlations.
The first two models are derived for t2g electrons as in
LaTiO3 (d1) and LaVO3 (d2), where we demonstrate the
violation of the GK rules, while the third one is for eg holes
as in KCuF3 (d9), in which the GK rules are perfectly
obeyed. This qualitative difference results from the quan-
tum nature of t2g orbitals which may form singlets, while
eg orbitals behave more Ising-like and orbital singlets
cannot form.

Superexchange may be regarded to arise from virtual
excitations into upper Hubbard bands, due to hopping with
amplitude t, while low-energy charge excitations are
quenched by strong on-site Coulomb interaction U. The
resulting spin-orbital models take the generic form

H � J
X

�

X

hijik�

�� ~Si � ~Sj � S
2�Ĵ���ij � K̂

���
ij � �H orb; (1)

where � � a; b; c labels the cubic axes. The first term
describes the superexchange interactions (J � 4t2=U is
the superexchange constant) between transition-metal
ions in the dn configuration with spin S. The orbital opera-
tors Ĵ���ij and K̂���ij depend on Hund’s exchange parameter
� � JH=U, which determines the spectra of the virtual
dni d

n
j ! dn�1

i dn	1
j charge excitations. In all three models

considered here, for each axis � only two orbital flavors are
relevant, and Ĵ���ij and K̂���ij can be expressed in terms of
pseudospin T � 1=2 operators ~Ti and ~Tj. Finally, H orb

stands for the orbital interactions (of strength V) induced
by the coupling to the lattice—its form depends on the
type of orbitals (t2g or eg).
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For the t2g systems we will consider chains along the c
axis, where only two (yz and zx) orbital flavors are active,
i.e., participate in the hopping. We assume the idealized
case where these two orbitals contain one electron per site,
which implies that the third (xy) orbital is empty in the d1

model and filled by one electron in the d2 model. The
orbital operators, Ĵ�c�ij �d

1� [10,11] and Ĵ�c�ij �d
2� [12], de-

scribing the coupling between the S � 1=2 spins of the
Ti3� (d1) ions in cubic titanates and that between the S � 1
spins of the V3� (d2) ions in cubic vanadates, respectively,
reduce in the absence of Hund’s coupling to an SU(2)-
symmetric expression / � ~Ti � ~Tj �

1
4�, which may take

both positive and negative values. Note also that the super-
exchange [see Eq. (1)] thus contains interactions like
�S�i T

	
i ��S

	
j T
�
j � � �S

	
i T
�
i ��S

�
j T
	
j �, which generate simul-

taneous fluctuations of spins and orbitals described by the
composite operators Q�i 
 S�i T

	
i etc. At finite � both

Ĵ�c�ij �d
1� and Ĵ�c�ij �d

2� also contain

~T i � ~Tj �
1

2
�T�i T

�
j � T

	
i T
	
j � � T

z
i T

z
j : (2)

This operator appears because double occupancy of either
active (yz or zx) orbital is not an eigenstate of the on-site
Coulomb interaction. Consequently, the total T and Tz

quantum numbers are not conserved and orbital fluctua-
tions are amplified. Finally, GdFeO3-type distortions in-
duce orbital interactions / 	VTzi T

z
j favoring FO order

along the c axis [13].
In the eg system there are two orbital flavors (3z2 	 r2

and x2 	 y2), and for each axis a different linear combina-
tion of them is active (3x2 	 r2 along a, 3y2 	 r2 along b,
and 3z2 	 r2 along c). Thus the superexchange Ĵ���ij �d

9�

between the S � 1=2 spins at the Cu2� �d9� ions in KCuF3

is expressed [14] in terms of axis-dependent orbital opera-
tors T�a;b�i � 	 1

4 ��
z
i �

���
3
p
�xi � and T�c�i �

1
2�

z
i , given by

Pauli matrices �xi and �zi . In the absence of Hund’s cou-
pling Ĵ���ij �d

9� � �T���i 	
1
2��T

���
j 	

1
2�, which, in sharp con-

trast to the t2g case above, is never negative owing to only a
single orbital being active along each axis. In formal terms,
Ĵ���ij �d

9� is not SU(2) symmetric, and thus orbital singlets

are not formed. The Ising-like form of Ĵ���ij �d
9� makes the

d9 model look more classical than the t2g models, but spin-
orbital dynamics is still promoted as the orbital flavor is not
conserved [15]. Finally, the JT ligand distortions around
Cu2� ions lead to orbital interactions / VT���i T���j that
favor AO order.

We investigated intersite spin, orbital and composite
spin-orbital correlations in the above spin-orbital models.
To make the results comparable in all cases, we use

Sij � h ~Si � ~Sji=�2S�2 (3)

for the spin correlations. The orbital and spin-orbital cor-
relations are defined for the t2g (d1 and d2) models as
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T�t�ij � h ~Ti � ~Tji; (4)

C�t�ij � �h� ~Si � ~Sj�� ~Ti � ~Tj�i 	 h ~Si � ~Sjih ~Ti � ~Tji�=�2S�
2; (5)

while for the eg (d9) model

T�e�ij � hTiTj 	
1
2�Ti � Tj�i

���; (6)

C�e�ij � h� ~Si � ~Sj��TiTj 	
1
2�Ti � Tj��i

��� 	 SijT
�e�
ij : (7)

These definitions of C�t;e�ij are dictated by the structure of
the spin-orbital superexchange in the JH ! 0 limit.

We have solved both t2g models, d1 and d2, on four-site
chains along the c axis using periodic boundary conditions,
and we find that nontrivial spin-orbital dynamics strongly
influences the intersite correlations. First we consider V �
0, i.e., the purely electronic (superexchange) spin-orbital
models. In the titanate d1 case one recovers the SU(4)
model [16] in the limit of � � 0, with robust SU(4) singlet
correlations [17]. Indeed, in the four-site chain all intersite
correlations are identical and negative, Sij � T�t�ij � C�t�ij �
	0:25 [Fig. 1(a)]. As expected, this value is somewhat
lower than 	0:215 obtained for the infinite SU(4) chain
[18]. At finite � one finds T�t�ij < C�t�ij < Sij < 0 as long as
the spin-singlet (S � 0) ground state persists, i.e., for � &

0:21, and the GK rules, which imply that the signs of Sij
and T�t�ij are different (spin and orbital correlations are
complementary), are violated. Apparently the composite
spin-orbital correlations C�t�ij < 0 dominate and cannot be
determined from Sij and T�t�ij by mean-field (MF) decou-
pling, so the spin and orbital variables are entangled,
similar to entanglement in pure spin models [19]. In fact,
the values of the correlations indicate that the wave func-
tion on a bond hiji is close to a singlet of the (total)
composite quasispin ~Qi � ~Qj, equivalent to a linear com-
bination of (spin-singlet/orbital-triplet) and (spin-triplet/
orbital-singlet).

The vanadate d2 model behaves similarly, with all three
Sij, T

�t�
ij , and C�t�ij correlations being negative in the spin-

singlet (S � 0) orbital-disordered phase, stable for � &

0:07 [Fig. 1(b)]. Here the spin correlations are weakly AF
(Sij ’ 	0:05), and AF and FM bonds compete, promoting
a dimerized state [20]. For both (d1 and d2) models the
conventional picture is restored at large Hund’s coupling,
which stabilizes the FM ground states (at � * 0:21 for d1,
and at � * 0:07 for d2). Here the spin-orbital correlations
decouple (C�t�ij � 0) and the GK rules are perfectly obeyed,
with positive Sij � 0:25 (FM) and negative T�t�ij � 	0:5
(AO) correlations.

The d9 model shows completely different behavior.
Considering a four-site plaquette in the ab plane, one finds
that the conventional spin-orbital interrelation (AF/FO or
FM/AO) is a robust property of the model at any value of
Hund’s coupling. For small � & 0:25, FO correlations
T�e�ij > 0 are accompanied by strong AF spin correlations,
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Sij < 0, and this changes into the opposite at large �
[Fig. 1(c)], just as one would expect from the GK rules.
Reflecting this situation, the composite spin-orbital corre-
lationsC�e�ij are weaker than the spin correlations Sij and the
orbital correlations T�e�ij . This permits spin-orbital separa-
tion in the ground state, and corrections to this picture are
only perturbative [21].

Next we consider finite V, where one expects that the
coupling to the lattice could suppress the orbital fluctua-
tions and cure the apparent violation of the GK rules in the
t2g models. Indeed, at small � finite V induces orbital order
and so stabilizes the AF/FO phase [Figs. 1(d) and 1(e)],
composite spin-orbital fluctuations are suppressed and the
GK rules are restored. Already infinitesimal interaction
V > 0 removes the SU(4) symmetry of the d1 model at
� � 0 by an Ising-like orbital anisotropy. However, for
sufficiently large Hund’s exchange � the spin-singlet phase
survives (unless V 
 J, i.e., orbital interactions much
stronger than the superexchange). At V � J one thus finds
three magnetic phases in the d1 (d2) model [Figs. 1(d) and
1(e)]: (i) AF/FO order [22] in the range of � & 0:04 (� &

0:06); (ii) an intermediate orbital-disordered phase with
negative spin, orbital and composite spin-orbital correla-
tions of about equal strength, and (iii) FM/AO order for
�* 0:22 (�* 0:11). The first two are separated by an
orbital transition within the spin-singlet phase. Notably,
the GK rules are perfectly obeyed in phases (i) and (iii)
[23], while again they do not apply in the intermediate
phase (ii), which is moved now to a more realistic regime
of larger �S.
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FIG. 1 (color online). Intersite spin Sij (filled circles), orbital
T�t;e�ij (empty circles), and composite spin-orbital C�t;e�ij (crosses)
correlations as functions of Hund’s exchange �S, for
V � 0 (left) and for V � J (right) for: (a), (d) d1 model, (b),
(e) d2 model, and (c), (f) d9 model.
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In the d9 case finite V only stabilizes the large-� phase
with FM/AO order at the expense of the small-� AF/FO
phase, but the behavior of the model is not changed quali-
tatively [compare Figs. 1(c) and 1(f)]. We emphasize that
the different behavior of t2g and eg systems is intrinsic, i.e.,
has its origin in different spin-orbital physics generated by
the electronic superexchange interactions. In particular, it
is not caused by being affected differently by coupling to
the lattice (i.e., by finite V).

Further evidence that the GK rules do not directly apply
in t2g systems follows from the spin exchange constants
Jij 
 hĴ

���
ij i, the expectation value being taken over the

orbital variables. One finds that in the orbital-disordered
phase formally FM interaction Jij < 0 is in fact, both for
V � 0 and for finite V, accompanied by AF spin correla-
tions [Figs. 2(a), 2(d), 2(b), and 2(e)], whereas in the eg
case the spin correlations follow the sign of Jij for all val-
ues of � [Figs. 2(c) and 2(f)]. This remarkable difference
between t2g and eg systems is due to composite spin-orbital
fluctuations, which are responsible for ‘‘dynamical’’ ex-
change constants Ĵ���ij in the former case, which exhibit
large fluctuations, measured by �J��h�Ĵ���ij �

2i	J2
ij�

1=2

[11], as we illustrate here at � � 0. While the average spin
exchange constant is small in both t2g models (Jij ’ 0 for
d1, Jij ’ 	0:04 for d2), Ĵ���ij fluctuates widely over both
positive and negative values. In the d1 case the fluctuations
between (S � 0=T � 1) and (S � 1=T � 0) bond states
are so large that �J � 1. They survive even quite far from
the high-symmetry SU(4) point (at �> 0:1). Also in the d2
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FIG. 2 (color online). Spin exchange constants Jij at V �
0 (left) and at V � J (right) as functions of Hund’s exchange
�S for (a), (d) d1 model; (b), (e) d2 model; (c), (f) d9 model. In
the shaded regions in (a), (b), (d), and (e), Jij is negative (FM)
and yet the spin correlations are AF, Sij < 0 (see Fig. 1).
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TABLE I. Energies per site: exact E0 and MF EMF for the spin-
singlet phases in the three spin-orbital models, obtained with
four-site clusters. All energies and V in units of J.

d1 model d2 model d9 model
�S V E0 EMF E0 EMF E0 EMF

0.0 0.0 	0:500 0.0 	0:316 	0:028 	0:594 	0:443
0.06 0.0 	0:655 	0:006 	0:388 	0:112 	0:634 	0:472
0.07 1.0 	0:607 0.097 	0:311 	0:027 	0:633 	0:487
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model the orbital bond correlations change dynamically
from singlet to triplet [12], resulting in �J > jJijj, with
�J � 1

4 f1	 �2Tij �
1
2�

2g1=2 ’ 0:247. In contrast, the more
classical behavior in the d9 case is confirmed by �J < Jij,
as Jij ’ 0:56 and �J � 1

2 f1	 �2Tij 	
1
2�

2g1=2 ’ 0:50.
When quantum entanglement occurs, the ground state

energy E0 cannot be estimated reliably by MF decoupling
of composite correlations (i.e., with the assumption
C�t;e�ij � 0). The corrections beyond the MF energy EMF

are largest in the d1 case and remain significant in the d2

model (Table I), but are much less pronounced in the d9

model, even at V � 0. Only when such corrections disap-
pear, orbitals disentangle from spins and can be analyzed
separately [24], or spin states can be treated for fixed
orbital order according to the (static) GK rules.

We further notice that the d2 model exhibits an interest-
ing property related to the nature of transitions between
different phases. Namely, the ground state at V � J is a
nondegenerate spin singlet for 0<� & 0:11, while the
orbital quantum numbers change gradually from hTi ’ 2
and hTzi ’ �2 to hTi ’ 0 and hTzi ’ 0 in the crossover
regime of � ’ 0:06 [see Fig. 1(e)]. We have verified that
when the orbital terms / T�i T

�
j are neglected, i.e., if

Eq. (2) is replaced by an Ising-like term Tzi T
z
j , a sharp

transition occurs instead (from the doubly degenerate FO
state with Tz � �2 to a disordered state with T � 1, Tz �
0), consistent with abrupt transitions found before for an
infinite chain [25]. Therefore, we anticipate that the T�i T

�
j

terms induce a continuous orbital phase transition in the
thermodynamic limit.

We emphasize that composite spin-orbital fluctuations
and dynamical exchange constants will control, for realis-
tic parameters, the behavior of titanates and vanadates. In
fact, the idea that SU(4)-like fluctuations dominate in the
ground state has been put forward to understand the un-
usual properties of LaTiO3 [10] and the possible quantum
critical point in the titanate phase diagram [11,26]. Such
fluctuations also drive C-AF spin order in LaVO3 [12] and
spin-orbital dimerization in YVO3 [9,25].

Summarizing, in correlated insulators with partly filled
t2g shells, orbitals and spins are entangled, and average
spin and orbital correlations are typically in conflict with
the (static) GK rules. These rules should then instead be
understood in terms of dynamical spin and orbital correla-
tions that are complementary to each other, and both con-
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figurations—(orbital-singlet/spin-triplet) and (orbital-trip-
let/spin-singlet)—are entangled in the ground state. It
remains both an experimental and theoretical challenge
to investigate the physical consequences of spin-orbital
entanglement in real systems.
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Richard, Europhys. Lett. 61, 803 (2003), where the cal-
culation of the superexchange becomes more involved.

[6] K. I. Kugel and D. I. Khomskii, Sov. Phys. Usp. 25, 231
(1982).

[7] Y. Tokura and N. Nagaosa, Science 288, 462 (2000).
[8] B. Keimer et al., Phys. Rev. Lett. 85, 3946 (2000);

C. Ulrich et al., ibid. 89, 167202 (2002).
[9] C. Ulrich et al., Phys. Rev. Lett. 91, 257202 (2003).

[10] G. Khaliullin and S. Maekawa, Phys. Rev. Lett. 85, 3950
(2000); G. Khaliullin, Phys. Rev. B 64, 212405 (2001).

[11] G. Khaliullin and S. Okamoto, Phys. Rev. Lett. 89, 167201
(2002); Phys. Rev. B 68, 205109 (2003).

[12] G. Khaliullin, P. Horsch, and A. M. Oleś, Phys. Rev. Lett.
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