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Wettability Control of Droplet Deposition and Detachment

Jean-Christophe Baret1,* and Martin Brinkmann2,†

1Philips Research Laboratories Eindhoven, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands
2Biological Nanosystems Group, Interdisciplinary Research Institute c/o IEMN, Avenue Poincaré BP 69,
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The conditions for droplet deposition on plane substrates are studied using electrowetting to contin-
uously modulate the surface wettability. Droplets of controlled volume attached to the tip of a pipette are
brought into contact with the surface. During retraction of the pipette the droplets are deposited or detach
completely depending on volume and contact angle. The experimental limit of deposition in the contact
angle or volume plane is in good agreement with analytical and numerical predictions obtained within the
capillary model.
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FIG. 1. Two typical sequences of detachment (a) and deposi-
tion (b) when the distance d between substrate and pipette tip is
quasistatically increased. The contact angle is � � �118� 2�� in
both cases. The volumes are 13 �L (a) and 21 �L (b) while the
outer radius re of the cylindrical pipette is 255 �m. (c) Sketch of
the electrowetting setup. The Si-As substrate is covered by an
hydrophobized SiO2 insulating layer.
Small liquid droplets adhere to a solid substrate simply
by a gain of interfacial energy. On superhydrophobic sur-
faces only small parts of the substrate establish contact
with the liquid [1] and droplets may bounce back from the
surface if their impact velocity is too high [2]. One can
easily imagine that a poor wettability of the substrate
makes it nearly impossible to detach small droplets from
the tip of a pipette and to place them on the surface: if the
adhesion energy is smaller than the work required to break
the liquid at the tip, the droplet remains attached to the
pipette. Inspired by this phenomenon we performed an
experimental and theoretical study to quantify the effect
of surface wettability and droplet volume on the mode of
droplet instability. The series of images in Figs. 1(a) and
1(b) illustrate a complete redetachment and a successful
deposition, respectively, of a small water droplet while
retracting the pipette. Interestingly, analogous shape insta-
bilities have been reported for fluid membranes, i.e., neck-
ing instabilities of stretched membrane tubes [3] or vesicle
desorption from rigid substrates under the influence of a
point force both for weak [4] and strong [5] membrane
adhesion. However, for the capillary problem the mode of
droplet instability has not been systematically studied. In
this Letter, we will give a quantitative criterion for droplet
detachment based on a stability analysis within the capil-
lary model which is in perfect agreement with the experi-
mental data. Our criterion can be directly applied in
technological processes which involve the production and
placement of small droplets, e.g., in spotting arrays of
biomolecules [1,6] or in microcontact printing [7].

In our experimental setup, we use the electrowetting
effect on dielectric substrates [8,9] as a convenient way
to continuously modulate the contact angle of a conductive
droplet with an applied ac voltage. In particular, we em-
ployed n-doped As conductive silicon wafers (Wacker
Siltronics AG) coated with a silicon oxide insulating
layer (thickness T � 1:1 �m, dielectric constant "0"r �
35 pF=m) and hydrophobized with an octadecyltrichloro-
silane (OTS) monolayer. Salt was added to the water (NaCl
06=96(14)=146106(4)$23.00 14610
0.3% mass concentration) in order to increase its electric
conductivity. Silicon oil (Fluka DC200) was used as an
ambient phase to suppress evaporation, decrease contact
angle hysteresis to a value� 2�, and to reduce the effect of
gravity. With a density excess �� � 60 kg=m3 of water
over oil and a surface tension of the water-oil interface � �
�38� 1� mN=m, as measured by the pendant drop method
6-1 © 2006 The American Physical Society
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FIG. 2. Deposition and detachment regime in the (�; V) dia-
gram. The full line refers the analytical expression given by
Eq. (4). For large volumes the influence of gravity on the limit
between deposition (	) and detachment (+) is obtained by
numerical minimization (dashed line) using the program
Surface Evolver [16] for a capillary length Lc=re � 32.
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(Dataphysics-OCA30), the capillary length is Lc �
��=��g�1=2 � 8 mm (g being the acceleration of gravity).
Droplets are extruded from a steel pipette (EFD—preci-
sion stainless tips, external radius re � 255 �m, internal
radius 125 �m) used as a counterelectrode for the voltage
supply; see Fig. 1(c). An ac voltage U (frequency f �
10 kHz) is applied between the electrode and the silicon
wafer. Then, the substrate is approached to the droplet of
fixed volume V located at the tip of the pipette until a
contact is established: the droplet spreads on the surface
until the apparent contact angle � reaches a voltage depen-
dent equilibrium. The contact angle measured from the
side is in good agreement with Lippmann’s equation

cos� � cos�Y �
"0"r
2T�

U2 (1)

up to 50 V. Here, �Y � 155� is Young’s contact angle of
the droplet on the substrate, i.e., at zero voltage. Above
50 V saturation effects are observed [9]. We restrict our
analysis to the regime where Lippmann’s equation holds,
i.e.,U < 50 V, which allows a contact angle modulation in
the range 90� < �< 155�.

The distance d between the tip of the pipette and the
substrate is then increased in steps of � � 10 �m and
corresponding images of the droplet at equilibrium are
registered. The radius of the droplet-substrate interface rs
and the tip-substrate distance d are extracted by image
processing. As shown in Fig. 1, droplets elongate during
an increase of the distance d while the radius rs of the
contact line decreases and the contact angle � on the
substrate remains constant within 2�. The range of locally
stable droplets bridging the substrate and tip is limited by a
maximal distance dmax. Having reached d � dmax two
situations are observed: the droplet either detaches from
the substrate (regime called ‘‘detachment’’) or breaks away
from the pipette which leads to a deposited droplet (regime
called ‘‘deposition’’).

The transition between the two regimes is studied for a
variety of fixed contact angles by changing the droplet
volume. At given contact angle a droplet is deposited at
volumes V larger than a critical value Vc while detachment
occurs for V < Vc. The experimental results are displayed
in Fig. 2 showing that Vc increases with increasing �: the
poorer the wettability of the surface the larger the minimal
droplet volume leading to deposition. The experimentally
determined points compare well to the predictions obtained
within the capillary model; cf. Fig. 2. At fixed volume the
regions of detachment and deposition are limited by a
critical contact angle �c.

A theoretical analysis of the droplet instabilities has
been performed in the capillary model and for axisymmet-
ric droplet configurations. As the electric field is confined
to a very small region around the contact line [9], the
Maxwell stress solely enters the effective droplet-substrate
surface tension and, assuming neutral buoyancy, we can
consider the liquid-liquid interface as a surface of constant
14610
mean curvature. To determine local stability of a bridging
droplet we have to consider the complete set of stationary
droplet shapes for a given tip-substrate distance. It is
reasonable to assume that the liquid bridges are axisym-
metric surfaces close to breakup. In principle, all axisym-
metric bridging shapes are parametrized by Delaunay
surfaces [10] and among them we only consider stretched
solutions corresponding to unduloids [11]. The radius of
the unduloid is parametrized in cylindrical coordinates by a
function r�rb; rn; z� involving elliptic integrals of the first
and second kind [12]. The parameters rb and rn of the
unduloid correspond to the maximal (bulge) and minimal
(neck) radius of the shape, respectively, while z is the
coordinate on the symmetry axis. Stationary shapes are
given by unduloid segments which satisfy four subsidiary
conditions given by the tip radius re of the pipette, the
contact angle � on the substrate, the droplet volume V, and
the tip-substrate distance d:

r�rb; rn; ze� � re
dr�rb;rn;z�

dz jz�zs � cot�R
ze
zs
�r2�rb; rn; z�dz � V
ze � zs � d:

9>>>=
>>>;

(2)

The system of Eqs. (2) may have several solutions for a
given set of parameter values �re; �; V; d�. Each solution
corresponds to either a local minimum (or even global
minimum) or a saddle point in the energy landscape.

The first condition is used to determine the position ze of
the pipette tip. As illustrated in Fig. 3(a) one has two
solutions z�e and z�e or none. The second condition of a
given contact angle on the substrate is fulfilled either at one
of two positions z�s and z�s , enclosing an inflection point
Pi, or nowhere, see Fig. 3(a). The number of possible
6-2
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FIG. 4. Solution branches in the �rs; d� diagram showing the
two possible scenarios of instability. Experimentally observed
deposition (down triangles) corresponds to regime II while
detachment (up triangles) corresponds to regime I. The broken
curves illustrate the theoretical predictions for different droplet
volumes and terminate on a branch of spherical limiting shapes
Si (full lines).
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FIG. 3. (a) Sketch of an unduloid with positions z�s and z�e
indicated where the respective subsidiary conditions of a given
contact angle and a contact line pinned at the tip of the pipette
are satisfied. The dots indicate the position of the inflection point
Pi. (b) Branches of stationary solutions. The spherical limiting
shapes S1 and S3 are connected (regime I). (c) S1 connected to
S2 (regime II). According to (4) we find a contact angle � �
114:25� at the transition of the branch topology for V=r3

e � 100.
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solution classes can be reduced since segments longer than
one period are always found unstable [13,14]. Segments
which lack a maximum turn out to be irrelevant to our
analysis in the case of hydrophobic contact angles � >
�=2. Finally, four different classes of solutions are left to
be considered: unduloid shapes �1; . . . ; 4� generated by
plane cuts at fz�e ; z�s g, fz�e ; z�s g, fz�e ; z�s g, and fz�e ; z�s g,
respectively. In the limit rn ! 0 the unduloid surface tends
to a chain of kissing spheres and, hence, to each class of
solutions (i � 1; . . . ; 4) corresponds a particular spherical
limiting shape Si. A singular neck appears close to the tip
while approaching shapes S2 or S4. The limiting shapes S3

and S4 exhibit a singular neck at the substrate. Solutions
beyond the regular shape S1 are nodoids [10,12], the
second class of Delaunay surfaces.

In order to numerically solve the system of Eqs. (2), we
fix the parameters �re; �; V�, leaving the distance d free and
search for the solution in each class of unduloid shapes.
The solutions are parametrized by the radius rs which acts
as an ‘‘order’’ parameter. This arbitrary choice of repre-
sentation has the advantage that both rs and d are easily
accessible in our experiments. The Figs. 3(b) and 3(c)
illustrate the calculation at a volume fixed to V=r3

e �
100. The solutions are represented in a �rs; d� diagram
where they form continuous branches. Depending on the
value of � two regimes are observed.
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In regime I we find two solution branches, one connect-
ing the limiting shape S1 with S3, and a second connecting
S2 with S4; cf. Fig. 3(b). Solutions on the branch starting
from S1 are locally stable up to the turning point Amax. In
regime II, however, the branches form two distinct lobes
which connect S1 and S2 as well as S3 and S4; see
Fig. 3(c). Following the solution branch from S1 to larger
distances we arrive at a turning point Bmax: no locally
stable solution is found at higher distances.

Figure 4 shows the comparison between the model for
� � 101� and the experimental measurements of the
parameters �rs; d� for deposition (down triangles) and de-
tachment (up triangles) at � � �101� 1�� and V1=3=re �
2:6; 2:9; 3:1; 3:4. The two modes of instability can be dis-
tinguished by the evolution of the radius rs as the distance
d is increased. When d approaches dmax, the radius rs
displays a short increase before the instability sets in
(deposition regime or regime II), or decreases rapidly ere
the droplet detaches from the substrate (detachment regime
or regime I). Hence, the experimental detachment and
deposition regimes are, respectively, correlated to the theo-
retical regimes I and II. Physically, while pulling, rs
shrinks which reduces the adhesion force. In regime I,
the pulling force ultimately overcomes adhesion leading
to detachment. In regime II, at large volume or wettability,
the larger adhesion force ties the droplet to the substrate.
Instead of detaching, the droplet develops a neck close the
tip before the liquid breaks.

An accurate approximation of the droplet shape at the
transition between regime I and II is given by an unduloid
6-3



PRL 96, 146106 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
14 APRIL 2006
segment where all classes (1–4) meet, i.e., with an inflec-
tion point on the substrate and a neck radius which equals
the radius of the tip. In the �rs; d� diagram, it appears on the
left, unstable lobe in regime II and at a droplet volume very
close to the transition. The boundary conditions for this
special unduloid segment read

rn � re
rb � �1� cos��=�1� cos��re
rs � �rbrn�1=2

9>=
>; (3)

and determine the estimated transition volume Vc as a
function of the contact angle �:
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Here, we use the abbreviation x � cos� and the elliptic
integrals of the first and second kind

E�k;’� �
R’

0 d �1� k
2sin2 �1=2

F �k;’� �
R’

0 d �1� k
2sin2 ��1=2

�
; (5)

respectively, with a modulus k2 � �4x=�1� x�2.
Inserting a contact angle of � � �114:25� 0:05�� into

(4) gives a volume of Vc=r3
e � 100� 0:6, in excellent

agreement with the experimental values. The transition
volume Vc according to expression (4) is displayed as the
full line in Fig. 2 and matches with the experimentally
determined limit up to � � 120�. For larger contact angles,
a mismatch is observed due to the influence of gravity. In
the limit � � 180�, adhesion vanishes and our model
predicts a diverging volume Vc. In contrast, the volume
for gravity induced deposition (‘‘dripping faucet’’) scales
as Vg / L2

c 	 re [15]. The limit between deposition and
detachment displays a transition from the volume Vc /
f���r3

e with the expression f��� on the right-hand side of
Eq. (4) to Vg as � tends to 180�. This defines a capillary
length L�c / 
f����1=2re at the crossover between adhesion
dominated and gravity dominated deposition. The influ-
ence of gravity is numerically confirmed by minimizations
with the software Surface Evolver [16] using the experi-
mental value Lc=re � 32. As in our experiments we in-
crease the distance in small steps, we minimize the
interfacial energy for each value of d and record the
evolution of rs. Qualitatively, the evolution of rs is identi-
cal to the scenario found in the analysis for zero gravity.
Further experiments performed at Lc=re � 10 show that
gravity influences significantly the deposition already at
� & 100�.

In summary, we have studied experimentally the tran-
sition between droplet deposition and detachment on sur-
faces of various wettabilities. It is demonstrated that
electrowetting can be used as a convenient and robust
14610
tool to achieve an active control of surface wettability. A
clear transition between deposition and detachment occurs
at a critical volume which is a monotonously increasing
function of the contact angle. If gravity is negligible, an
estimate of the transition volume is given in terms of an
analytical expression and in quantitative agreement with
the experimental data. For the particular system considered
here, the analysis of droplet instabilities can be based on
the evolution of mechanical equilibrium states and does not
evoke the dynamics of breakup [17] or contact line motion.

Our experimental setup can be combined with the ‘‘pin
technique’’ used in microarray production [6]: if the sub-
strate is equipped with a pattern of electrodes one may
obtain a full control on droplet deposition by applying a
voltage during liquid contact. The electrode pattern guar-
antees deposition on the selected location.
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