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Elastic Instabilities of Polymer Solutions in Cross-Channel Flow
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When polymer molecules pass near the hyperbolic point of a microchannel cross flow, they are strongly
stretched. As the strain rate is varied at low Reynolds number ( < 1072), tracer and particle-tracking
experiments show that molecular stretching produces two flow instabilities: one in which the velocity field
becomes strongly asymmetric, and a second in which it fluctuates nonperiodically in time. The flow is
strongly perturbed even far from the region of instability, and this phenomenon can be used to produce

mixing.

DOI: 10.1103/PhysRevLett.96.144502

The rheology of polymeric fluids is often complex, and
their material properties have a strong impact on flow
behavior. It has long been observed that the presence of
polymer molecules in a fluid can lead to flow instabilities
and nonlinear dynamics [1-7]. For example, Giesekus [3]
observed a cellular instability of a non-Newtonian fluid in
Taylor-Couette flows, analogous to the classical Taylor-
Couette instability of Newtonian fluids, but at very low
Reynolds (Taylor) numbers. Later, Larson, Shaqfeh, and
Muller [8] demonstrated that these non-Newtonian insta-
bilities are caused by fluid elasticity. Groisman and
Steinberg [9] demonstrated an increased flow resistance
and statistical properties typical of turbulence in polymeric
fluids at very low Reynolds numbers. They found that
viscoelasticity can enhance mixing in small curved chan-
nels [10].

Macroscopic non-Newtonian behavior results from mi-
croscopic stresses due to flow-induced changes in polymer
conformation in solution. These stresses depend on the
nature of the flow. For example, it has been shown that
elongational (or extensional) flows can stretch and orient
polymer molecules to a greater extent than ordinary shear
flows [11]. The behavior of polymer solutions in exten-
sional flow has received growing attention [12-15].
Theoretical investigations [16,17] predict that a flexible
polymer molecule that is initially coiled at rest can be fully
stretched if subjected to uniaxial extensional flow at suffi-
ciently high strain rates. This is the so-called “coil-
stretch” transition, which is predicted to occur at & =
0.5A7! [18], where A is the relaxation time of the fluid
and ¢ is the strain rate. Early experiments in a cross-
channel geometry using birefringence showed that mole-
cules are extended in large strain fields, and that they align
with the flow [19-22]. Later experiments capable of imag-
ing individual polymer molecules (DNA) near the stagna-
tion point in a cross-channel flow [12,23] found evidence
of a sharp hysteretic transition from the coiled to the
stretched state [24]. At high strain rates, distinct molecular
conformations with different dynamics were observed. An
important question is how polymer molecules that are
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driven away from equilibrium affect the bulk flow behavior
in a simple extensional flow.

In this Letter, we report two novel flow instabilities of a
planar extensional flow of a dilute flexible polymer solu-
tion under steady forcing. In the first instability, the flow
becomes deformed and asymmetric but remains steady. In
a further instability that occurs at higher strain rates, the
velocity field fluctuates nonperiodically in time and can
produce mixing. Viscous Newtonian fluids, and a dilute
semirigid polymer solution, are devoid of instabilities
under these conditions (low Reynolds number).

An extensional flow is generated in a flow cell consisting
of crossed channels that are 650 wm wide and 500 pm
deep [Fig. 1(a)]. Because of the small length scale (L =
650 um) the Reynolds number (Re) is small (Re < 1072).
Here, Re = LUp /7, where U is the rms velocity, p is the
fluid density, and 7 is the fluid viscosity. For the polymeric
fluid, we also define the Deborah number (De), which is the
product of the longest relaxation time of the fluid (A) and
the flow strain rate (¢). The polymer used here is high
molecular weight polyacrylamide (PAA, 18 X 10 MW),
which has a flexible backbone. The flexible polymeric
solution is made by adding 200 ppm of PAA to a viscous
Newtonian solvent (97%-glycerol aqueous solution). The
solution is considered dilute; the overlap concentration (c¢*)
for PAA solutions is approximately 350 ppm (c¢/c* =
0.57). The fluid is characterized using a stress-controlled
rheometer at 25 °C. The shear viscosity 1 of the PAA
solution is nearly constant at 1.18 Pas, for strain rates up
to 10 s~!. This behavior is typical of Boger fluids [25]. The
longest relaxation time (A) is obtained using a direct
measurement of the first normal stress difference (N;),
which is nearly proportional to the mean square shear
rate ¥ at low shear rates. Using the Oldroyd-B rheological
model, which is generally thought to be appropriate for
these solutions, A = W, /2(n — ng) [26], where the first
normal stress coefficient is ¥, = N,/9? = 9.44 Pas’ in
the limit of low shear rate. Here, 7g refers to the solvent
viscosity. We find that A = 12.4(*0.4) s. However, other
models would yield different relaxation times, and there-
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FIG. 1 (color online). Dye advection patterns for a cross-
channel flow with two inputs and two outputs at low
Re(<1072) for (a) Newtonian fluid, and (b) PAA flexible poly-
mer solution (strain rate &€ = 0.36 s~!, Deborah number De =
4.5), where the interface between dyed and undyed fluid is
deformed by an instability. (c),(d) Particle streak lines and
velocity field magnitudes corresponding to (a),(b), showing the
symmetry-breaking instability.

fore different values of De than those quoted here.
Therefore, in presenting our results, we also quote the 2D
strain rate &.

Fluorescein dye at concentration 1 X 1073 M can be
added for visualization. Fluid is injected into the cross-
slot geometry using syringe pumps; the flow rate is con-
stant to about 1.0% at each flow rate. We also measure
velocity fields by tracking small fluorescent particles
(5 pum diameter) seeded in the fluid.

To demonstrate the first instability, we show the results
of dye advection experiments using an epifluorescence
microscope in which a blue light illuminates the cross-
slot region, where the flow is strongly extensional. (There
is also, of course, some vorticity due to the upper and lower
boundaries of the flow channel.) A small quantity of dyed
solution (bright) is injected into one inlet, while undyed
polymer solution (dark) is injected into the other inlet.
Figure 1(a) shows the results for a Newtonian fluid (99%
glycerol, 7 = 0.8 Pas) at Re = 7 X 1073. The snapshot
reveals a sharp interface at the center of the cross-slot
region between the dye and undyed fluids, which demon-
strates that this fluid does not mix.

Figure 1(b) reveals an entirely different behavior if we
replace the Newtonian fluid by the dilute PAA solution
(n = 1.18 Pas), for a strain rate estimated from the mea-
sured 2D velocity field near the center height of the chan-
nel to be & = 0.36 s, or De = 4.5. (Velocity gradients

perpendicular to the plane of the channel are small near the
center plane.) The snapshot of the advected dye pattern
shows that the interface is deformed (wavy), although still
sharp. The pattern is steady and does not change signifi-
cantly over several minutes. The mirror image of this
pattern can also occur, depending on initial conditions.
That is, the flow is bistable [27,28].

Figure 1(c) shows both typical particle paths and the
magnitude of the time-independent velocity field of the
Newtonian fluid in the cross-slot region: a well-defined
symmetric extensional flow. Note that the velocity vanishes
at the stagnation point at the center of the cross-slot, where
the strain rate is highest, and the fluid is most strongly
stretched. The velocity field [Fig. 1(d)] shows a deformed
and asymmetric flow for the PAA solution.

The flow field for the PAA solution becomes time de-
pendent when & > 1 s~! (De > 12.5). We illustrate this
time dependence by showing a series of dye advection
images Figs. 2(a)-2(c) at & =213 s7! (De = 26.4).
These are consecutive snapshots of dye fields in the cross
slot, taken 1.75 s apart. The dye pattern oscillates, as can be
illustrated by following the interface between the dyed and
undyed fluids. At a given instant, the dyed solution no
longer divides equally between the two outlets. The inter-
face between the fluids is not as sharp as before [e.g.,
Fig. 1(c)]. This indicates that the three-dimensional struc-
ture is more complex than in the steady case.

To quantify the time dependence of the flow, we sample
a small square region in the cross slot (about 23% of the
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FIG. 2 (color online). (a)—(c) Dye advection patterns for the
PAA solution in the time-dependent regime (& =2.13s7!,
De = 26.4) at 1.75 s intervals. (d) Velocity magnitude, averaged
over the central 23% of the intersection region, for PAA at
various & and (in one case) for the Newtonian fluid. The flexible
polymer solution becomes time dependent for sufficiently large
&. (e) Corresponding power spectra of the velocity measure-
ments for £ = 0.36 s"! and ¢ = 2.13 s 1.
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channel width, centered on the stagnation point), and mea-
sure the average speed in that region as a function of time.
Sampling times are long enough to ensure the accuracy of
the velocimetry measurement (10 ms), but are much
shorter than the typical time scale of the fluid motion (of
order 2 s). Sequences of velocity records for flow at several
strain rates for PAA solutions, and for a Newtonian case,
are shown in Fig. 2(d). As ¢ is increased, the speed
fluctuations become larger. The Newtonian case produces
no such fluctuations at comparable strain rates.

The corresponding power spectra of the local speed
(velocity magnitude) are shown for two values of & in
Fig. 2(e). Since the entire velocity field must be measured
at each instant, the records are only a few hundred points
long, but this is sufficient to establish the qualitative fea-
tures of the spectra. The spectral power at low frequencies
grows by 2—4 orders of magnitude as ¢ is increased from
0.36 to 2.13 s7!. The speed fluctuations (and also the
fluctuations of the individual velocity components) are
nonperiodic, with a possible power-law spectral decay.
The corresponding spectrum for the Newtonian case is
nearly flat. Power-law spectra for sheared polymer solu-
tions at low Re have been demonstrated [9], but the exten-
sional case has not been previously reported. Despite
temporal fluctuations in the velocity field, no mixing is
observed in the cross-slot region.

Next, we examine the variation of the velocity field with
¢ and De in Fig. 3. Atlow & (¢ = 0.1 s™!, De = 1.2) the
velocity field resembles the Newtonian case in that it is
symmetric and steady [Fig. 3(a)]. The developing asym-
metry is evident at ¢ = 0.36 s~! (De = 4.5), but the flow

1.0+

0.8+ B

AVrmx

04 O

0.2

0.0 T T T T ]
0.0 0.5 1.0 15 2.0 25

&)

FIG. 3. Velocity fields at (a) ¢ = 0.1 s™! (De = 1.2, steady),
(b) ¢ =036s"" (De=45, steady and asymmetric), and
(c) ¢ =2.13 s7! (De = 26.4, time dependent and asymmetric).
The region shown is 600 X 600 wm. (d) Normalized rms devia-
tion AV, of PAA velocity fields from the Newtonian case at the
same shear rate (see text), along with a fit to the expected square
root law for a normal bifurcation.

remains steady [Fig. 3(b)]. As ¢& is further increased to
2.13 s7! (De = 26.4), we note the appearance of vortices,
as shown in Fig. 3(c). These vortices fluctuate in space and
time, rendering the velocity field time dependent. We
estimate the onset of time dependence to occur approxi-
mately at £ = 1.0 s™! (De = 12.5). Flow asymmetry and
time-dependent velocity fields have also been reported in
macroscopic entry (contraction) flows at higher Re, and
have been related to the extensional properties of the fluid
[7]. Recently, qualitatively similar behavior has been ob-
served in entry flows of low-viscosity elastic fluids in
microchannels [27,28] using streak imaging methods;
however, velocity fields were not reported.

We characterize the distortion quantitatively at each
strain rate by computing the root-mean-square deviation
of the velocity field from the Newtonian case at the same &
and using this quantity as an order parameter. The velocity
fields are first normalized by their respective average mag-

nitudes: V = V(x, y)/{|V(x, y)|). We then compute the rms

difference AV, = (|[Vp — Vy|2)*3, where Vp and V), are
the polymer and Newtonian velocity fields, respectively.
We plot the values of AV, as a function of & and De in
Fig. 3(d). The difference is close to O for low &, where the
velocity fields are nearly identical to their Newtonian
counterparts. As & is increased, we compare the growth
of AV, to the square root behavior that is typical of
forward bifurcations. The fit is reasonable even above & =
1.0 s7! (De = 12.5), where the flow is time dependent. We
do not find significant hysteresis in Fig. 3(d). We find a
critical strain rate for the onset of the asymmetric insta-
bility and bistability at ¢ = 0.15 s™! (De = 1.8).

We have also done experiments on a dilute solution of a
semirigid polymer (xanthan gum, 200 ppm) at the same
viscosity and rms shear rate. This solution shows no in-
stability; the velocity field is found to be similar to the
Newtonian case.

Although Poiseuille flows of viscoelastic fluids are lin-
early stable (due to the lack of curved streamlines), the
elastic instability near the hyperbolic point of the micro-
channel strongly perturbs the downstream Poiseuille flow.
We demonstrate this fact by plotting in Fig. 4(a) the
normalized speed as a function of the transverse channel
coordinate, 4 channel widths downstream from the hyper-
bolic point. The velocity profile for a Newtonian fluid
shows the familiar parabolic profile. This is also the
case for a PAA solution at ¢ = 0.1 s~! (De = 1.2) (below
the instability threshold). However, at higher £ > 1.0 s™ !,
e.g.,at & = 1.5 s7! (De = 18.6), we find that the velocity
profile is asymmetric and time dependent even far
downstream.

Achieving efficient mixing in microchannels is not a
trivial task because the flow is inherently laminar
(Re <1) due to small length scales. Several methods
have been proposed based on temporal or spatial, forcing
of the flow, three dimensions, and curved geometries in
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FIG. 4 (color online). (a) Longitudinal velocity (normalized by
the maximum value) as a function of the cross-channel coordi-
nate at 4 channel widths downstream of the hyperbolic point,
showing the strong distortion caused by the symmetry-breaking
instability. (b) Modified apparatus with an extra T at each outlet
to promote mixing. (c)—(e) Dye snapshots showing the stretching
and folding of fluid elements in one of the end regions that
results from the time-dependent instability, at & = 2.13 5!
(De = 26.4).

conjunction with dilute polymer solutions. (For a review,
see [29].) The instabilities documented here can also pro-
mote mixing in a simple steadily forced flow. By inserting
an extra “T” at each outlet as shown in Fig. 4(b), we find
that the extensional flow instabilities cause stretching and
folding of fluid elements in the outlet region. This is
demonstrated in Figs. 4(c)—4(e), where we show snapshots
taken 0.5 s apart. Here, the instability in the cross slot leads
to distorted regions of dyed and undyed fluid that are
transported to the extra 7 at the end, where they are
stretched and folded as illustrated schematically in
Fig. 4(b).

In conclusion, we find that flexible polymer solutions
show two distinct instabilities in an extensional cross-
channel flow at low Re(<1072). The first at & =
0.15 s7! (De = 1.8) leads to spatial symmetry breaking
and bistability, while the second at ¢ = 1.0 s™! (De =
12.5) produces broadband temporal fluctuations. The in-
stabilities were not found for the semirigid polymer solu-
tion under comparable conditions. We hypothesize that
these instabilities may be controlled by the stretching of
polymer molecules near the hyperbolic point. Numerical
simulations [13,15], birefringence measurements [20,21],
and direct measurements of DNA molecules [12,24] have
shown molecular extension in a cross-channel flow above a
critical strain rate. Whether the observed flow instabilities
in the present are related to the stretch-coil transition found
for flexible polymer solutions remains to be determined in
subsequent work. Given the clear evidence presented here

that the initial instability is a forward bifurcation, it should
be possible to obtain insight into its origin by analysis or
computation.
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