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Interference Oscillations in the Angular Distribution of Laser-Ionized Electrons
near Ionization Threshold
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We analyze the two-dimensional momentum distribution of electrons ionized by few-cycle laser pulses
in the transition regime from multiphoton absorption to tunneling by solving the time-dependent
Schrodinger equation and by a classical-trajectory Monte-Carlo simulation with tunneling (CTMC-T).
We find a complex two-dimensional interference pattern that resembles above threshold ionization (ATT)
rings at higher energies and displays Ramsauer-Townsend-type diffraction oscillations in the angular
distribution near threshold. CTMC-T calculations provide a semiclassical explanation for the dominance
of selected partial waves. While the present calculation pertains to hydrogen, we find surprising qualitative
agreement with recent experimental data for rare gases [A. Rudenko et al., J. Phys. B 37, L407 (2004)].
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The interaction of few-cycle laser pulses with matter has
recently attracted considerable interest [1] as increasingly
shorter pulses with duration of the order of 10 fs and below
became available. Novel aspects of laser-matter interac-
tions such as the dependence of high-harmonic radiation or
electron emission on the carrier envelope phase [2,3] and
the interference of electronic wave packets emitted at
different points in time during the ultrashort pulse [4]
became apparent. Another recent advance is the imaging
of the momentum distribution of the ionized electron pro-
viding insight into the ejection of both one-electron [5] and
nonsequential multiple electron emission [6]. For single-
electron emission, the longitudinal momentum distribution
(k, along the direction of the laser polarization) of photo-
electrons from rare gases features a broad ‘‘double-hump”
structure near threshold (E = 0) which surprisingly resem-
bles the k, distribution for nonsequential double ionization
[7]. While for the latter case this structure results from
electron-electron collision during rescattering of the laser-
driven electron at the ionic core, in the former case it is due
to the interplay of the Coulomb interaction and laser field
on the receding trajectory [7-10]. By contrast, the trans-
verse momentum distribution features a narrow Coulomb-
like cusp well known from ion-atom collisions [9,11,12].
Very recently, Rudenko et al. [5] presented first fully two-
dimensional (k,, kp) momentum maps for laser-ionized
electrons from different rare gases, displaying a complex
pattern whose origin is, so far, unexplained. A theoretical
investigation performed few years ago by de Bohan [13]
predicted similar patterns. In this Letter we investigate the
2D momentum map for laser ionization of hydrogen and
find an equally complex yet surprisingly similar pattern
suggesting a simple explanation, in terms of interferences
between different electron trajectories in the combined
laser and Coulomb field. The pattern is largely independent
of the atomic core potential.

The interaction between the laser field and the atom can
be characterized by two different mechanisms controlled
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by the value of the Keldysh parameter y = ,/1,/2U,,
where [, is the ionization potential of the atom, U, =
F}/4w? the ponderomotive energy, w the laser angular
frequency, and F,, the peak amplitude of the laser field.
In the multiphoton regime (y > 1) the atomic interaction
is governed by the quantum nature of the radiation field
resulting in the absorption of n photons (n = 1) from the
field. By contrast, in the tunneling regime (y << 1) the
atom responds to the strong perturbation by a ““classical”
electric field where ionization proceeds via tunneling. The
present calculation as well as recent experiments [5] ex-
plores the transition regime around y = 1 where a more
complex response is to be expected. We focus on hydrogen
in order to avoid any ambiguity resulting from additional
approximations required for many-electron targets.

The Hamiltonian of a hydrogen atom driven by a line-
arly polarized laser field is
52
() ()
2 r
where p and 7 are the momentum and position of the
electron, respectively, and F() is the time-dependent ex-
ternal field linearly polarized along the Z direction. The
laser pulse is chosen to be of the form

F(r) = Fosin2<ﬂ7t> cos(wt) O=r=17), (2

where 7 is the total pulse duration and F|, the peak field.
Atomic units are used throughout.

The time-dependent Schrodinger equation (TDSE) can
be solved by different techniques [14,15]. Approximation
methods include semiclassical approximation methods
[16,17], the (Coulomb-)Volkov approximation [18,19],
and classical-trajectory Monte-Carlo simulation with tun-
neling (CTMC-T) method [9,20]. We employ the general-
ized pseudospectral method for solving the TDSE [21].
The method combines a discretization of the radial coor-
dinate optimized for the Coulomb singularity with quad-
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rature methods to allow stable long-time evolution using a
split-operator method. Both the unbound as well as the
bound parts of the wave function |¢(f)) can be accurately
represented. The calculation of the 2D momentum distri-
bution requires projection of the partial waves |k, [) onto
outgoing Coulomb waves

dpP

1
di Ak

> ORI+ 1P (cosbi )k, (7)) ’ 3)
I

after the conclusion of the pulse. In Eq. (3) §,(k) is the
momentum-dependent Coulomb phase shift, 6, is the
angle between k and the polarization direction of the laser
field, Z, P, is the Legendre polynomial of degree [, and |k, [)
is the eigenstate of the atomic Hamiltonian with positive
eigenenergy E = k?/2 and orbital quantum number /. The
atom is initially in its ground state. Because of the cylin-
drical symmetry of our system for a linearly polarized laser
field, the magnetic quantum number m is a constant of
motion (m = 0). The distortion of the momentum distri-
bution due to long-range final-state Coulomb interactions
is fully accounted for in Eq. (3). We also have performed
classical-trajectory Monte-Carlo calculations [9] incorpo-
rating tunneling (CTMC-T) which include both Coulomb
and laser field interaction nonperturbatively.

Examples of the two-dimensional momentum distri-
bution (k,, k), ﬁ = Zwkp(%), for an 8-cycle pulse
(7 = 1005), frequé’n(fy w = 0.05, and different field am-
plitudes F, = 0.0377(y = 1.34), 0.0533(y = 0.95), and
0.075(y = 0.67) are shown in Fig. 1, illustrating the tran-
sition from the multiphoton to the tunneling regime. Each
frame displays a complex interference pattern which is
characterized by a transition from a ring-shaped pattern

at larger k = /k% + k? = 0.4 with circular nodal lines to a
pattern of pronounced radial nodal lines for small k near
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FIG. 1 (color). Doubly differential electron momentum distri-
butions in cylindrical coordinates (k,, k,). The parameters of the
field are w = 0.05, 7 = 1005. In (a) y = 1.34 (F, = 0.0377),
(b) ¥ = 0.95 (Fy = 0.053), and (c) ¥ = 0.67 (Fy = 0.075). In
(c) the border between the first and second ATI rings is drawn as
a dashed line.

threshold. The first point to be noted is that the overall
pattern displays a surprising and striking similarity to the
experimental pattern observed recently for rare gases, such
as helium, neon, and argon [5]. The ring pattern is remi-
niscent of above threshold ionization (ATI) peaks of the
multiphoton regime. The point to be noticed is that ATI
rings are present well into the tunneling regime for ener-
gies E = %kZ = w. In Fig. 1(c) the border between the
threshold region and the onset of ATI rings is plotted.
Concurrent CTMC-T calculations for the present laser
parameters show that classical trajectories provide only a
minor contribution to the electron spectra above E = 2U .
Since this region is effectively inaccessible by the classical
quiver motion, the multiphoton quantum process is the
dominant pathway.

The transition to an entirely different and unexpected
radial pattern occurs for energies below =~ from the
threshold. The radial nodal pattern at low energies can be
made more explicit by analyzing the angular differential
probability, d>P/dkd(cos8,), at fixed k (Fig. 2). The proba-
bility displays pronounced oscillations that remarkably
resemble those of a single Legendre polynomial,

d*p
dkd(cosfy,)

At low k£ = 0.19 the Legendre polynomial /, = 8 has the
largest weight. The dominance of a single Legendre poly-
nomial P; implies the dominance of a single partial wave in
the momentum-differential ionization cross section. The
resulting radial nodal pattern with pronounced minima at
certain angles is a well-known feature in low-to-
intermediate energy electron-atom scattering referred to
as generalized Ramsauer-Townsend (GRT) diffraction os-
cillations [22—-24]. The present result suggests that laser-
driven scattering of electrons in the Coulomb field of the
nucleus leads to similar Ramsauer-Townsend-like interfer-
ence fringes in the angular distribution.

The distribution of contributing partial waves, p;, is
presented in Fig. 3. The ATI-like component can be quan-
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FIG. 2. Angular distribution calculated by solving the TDSE
(thick solid lines) for w = 0.05, 7 = 1005, v = 0.67 (F, =
0.075), and k = 0.19. Dashed lines: square of the Legendre
polynomial P, (cosfy), Iy = 8.
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tified by the partial ionization probability p! with orbital
quantum number / residing within a given ith ring between
adjacent minima (k; — A;, k; + A;)

‘ kit A,
pi= [ ki P 5)
The ith circle has a mean radius k; = /2E;, where the
energy E; corresponds to the ith ATI peak of the photo-
electron spectrum. For i = 2 (k > 0.4) rings become rec-
ognizable. Angular distributions well into the multiphoton
regime (y >2) were first presented by Schafer and
Kulander [25]. In the tunneling regime (y = 0.67,
Fig. 3), the partial-wave distribution near threshold peaks
at [, = 8. The dominance of a single / is further enhanced
by the relative suppression of adjacent angular momentum
ly = 1 of opposite parity, which is a remnant of the multi-
photon parity selection rule. The second ring shows a peak
at [y = 9, even though no dominance of a single partial
wave is evident when looking at the angular distribution
(not shown).

Unlike in the multiphoton regime [25], a simple semi-
classical analysis of the interference pattern in the angular
distribution can be performed in the tunneling regime
(Fig. 3). GRT interference fringes in electron-atom scatter-
ing can be semiclassically described in terms of interfer-
ences of paths with (in general) different angular momenta
scattered into the same angle 6, [24]. In the special case
that a single partial wave and thus a single Legendre
polynomial P, (cosf;) dominates, the angular distribution
of the interfering paths must have very similar classical
“impact parameters’ such that they belong to the same
quantized angular momentum bin L € [[y, [, + 1]. An
analogous path interference occurs in laser-atom ionization
in the tunneling regime near threshold. To uncover the
relevant classical paths we employ a CTMC-T simulation
[9] for the same parameters as in Fig. 3. The ensemble of
ionized electrons near threshold features, indeed, an L
distribution [Fig. 4(a)] that resembles the quantum distri-
bution (Fig. 3) with a peak near [, = 8, clearly emphasiz-
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FIG. 3. Partial ionization probability, p;, as a function of the
angular momentum [/ for different spectral regions indicated in
the figure. The parameters of the field are w = 0.05, 7 = 1005,
and y = 0.67 (Fy = 0.075).

ing the underlying classical character of this process.
Moreover, the classical angular distribution [Fig. 4(b)]
for trajectories close to threshold (k = 0.26) confined to
the dominant angular momentum bin (8 = L = 9) covers,
indeed, all polar angles (0 = 6, =< 7) and thus satisfies the
requirement for GRT oscillations dominated by a single
Legendre polynomial. They correspond to Kepler hyper-
bolas with very similar opening angles of their asymptotes,
but with the angle of major axis relative to the laser
polarization distributed between 0 and 7. At higher £,
the angular distribution becomes much narrower and the
dominance of a single partial wave should disappear. A
typical electron trajectory after tunneling shows a quiver
motion along the polarization of the laser field. An inter-
esting observation is that even though the motion is
strongly driven by the laser field, the motion follows the
Kepler hyperbola [Fig. 4(c)]. The point to be emphasized is
that the dashed line in the Fig. 4(c) does not represent the
laser-driven trajectory averaged over a quiver oscillation
period but the unperturbed Kepler hyperbola with the
identical asymptotic momentum as the laser-driven trajec-
tory (solid line). Thus, the angular momentum of the
Kepler hyperbola is identical to that of the asymptotic L
of the laser-driven electron. The distance between the
hyperbola and the nucleus at the pericenter is given by
[26] romin = [v/1 + (kL)> — 1]/k>. 1dentifying the pericen-
ter of the hyperbola with the quiver amplitude, r;, = «
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FIG. 4. (a) L distribution of classical trajectories for the same
parameters as in Fig. 3. (b) Classical angular distribution for / =
8 (L € [8,9]) in the region k < 0.26. (c), (d) Classical trajecto-
ries of laser-driven electrons (solid lines) and unperturbed Kepler
hyperbola of same asymptotic E and L (dashed lines) differing in
the number of quiver oscillations on the outgoing path.
Interferences occur for emission at different times ¢; close to
different field maxima.
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with @ = Fy/w?, results in a simple relation between the
angular momentum L and «,

L(k) = (a2k* + 2a)/2. (6)

This simple classical formula allows the prediction of the
number of quantum interference minima in Fig. 1(c) or the
peak in the calculated partial waves populations in Fig. 3.
More remarkably, while our calculation pertains to hydro-
gen we found that the prediction of Eq. (6) agrees also with
data for Ar [see [5,27,28] ]. In this case the potential of the
core is not purely Coulombic. The agreement can be easily
explained by the fact that after tunneling, the continuum
electron propagates at large distances from the nucleus
where the combined laser and asymptotic Coulomb fields
dominate. The influence of the core potential is therefore
only of minor importance. The initial conditions for the
laser-driven trajectory are provided by tunneling ionization
with the release of the electron with zero longitudinal
velocity at times #; near the maxima of the field amplitude
F(t;) = Fy. Note that the number of quiver oscillations
along the Kepler orbit is not unique, thus allowing for
path interferences. Figures 4(c) and 4(d) illustrate two ex-
amples of such trajectories. Trajectories released at differ-
ent times ¢; or different maxima of the field reaching the
same asymptotic branch of the Kepler hyperbola will inter-
fere and generate GRT fringes. In order to reach the limit-
ing case of the dominance of a single P, , it is necessary
that interference trajectories at fixed energy exist that ap-
proximately cover the entire range of scattering angles
(0= 0, =< m), all of which with angular momenta close to
Iy [Fig. 4(b)]. Our CTMC-T calculations show that close to
threshold (k < 0.2) such families of trajectories indeed exist.

In conclusion, we have shown that single ionization of
hydrogen by a moderately strong ultrashort laser pulse, in
the transition regime from multiphoton to tunneling ion-
ization, gives rise to a complex interference pattern in the
two-dimensional momentum (k,, k,) plane. While at high
momenta remnants of ATI rings remain visible, at small k
near threshold Ramsauer-Townsend diffraction oscillations
develop at fixed k as a function of the angle between
emission direction and laser polarization. A simple semi-
classical analysis identifies the fringes resulting from in-
terfering paths released at different times but reaching the
same Kepler asymptote. The present result shows that a
proper semiclassical description along the lines of the
“simple man’s model” [29] requires a three-dimensional
description to account for Coulomb scattering. Our results
feature a striking similarity to recent data by Rudenko et al.
[5] suggesting the presence of the 2D interference fringes
to be only weakly dependent on the specific atomic core
potential.
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